NASA/CP—1999-209236 SEL-98-002

Software Engineering Laboratory Series

///v~(y/

s o
A ~

Proceedings of the Twenty-Third Annual ()t 0)
Software Engineering Workshop |

Compiled by:
Goddard Space Flight Center

Proceedings of a workshop held

at the Goddard Space Flight Center
Greenbelt, Maryland

December 2-3, 1998

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

June 1999

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information {STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to
the NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

* TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of
peer-reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

* TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

* CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

* SPECIAL PUBLICATION. Scientific, techni-
cal, or historical information from NASA
programs, projects, and mission, often con-
cerned with subjects having substantial public
interest.

» TECHNICAL TRANSLATION.
English-language translations of foreign scien-
tific and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creat-
ing custom thesauri, building customized data-
bases, organizing and publishing research results . . .
even providing videos.

For more information about the NASA STI Pro-
gram Office, see the following:

* Access the NASA STI Program Home Page at
http://www.sti.nasa.gov/STI-homepage.html

* E-mail your question via the Internet to
help @sti.nasa.gov

* Fax your question to the NASA Access Help
Desk at (301) 621-0134

¢ Telephone the NASA Access Help Desk at
(301) 621-0390

* Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

The views and findings expressed
herein are those of the authors and
presenters and do not necessarily
represent the views, estimates, or
policies of the SEL. All material
herein is reprinted as submitted by
authors and presenters, who are
solely responsible for compliance
with any relevant copyright, patent,
or other proprietary restrictions.

Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161

Price Code: A17 Price Code: A10

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSF C) and created
to investigate the effectiveness of software engineering technologies when applied to the
development of applications software. The SEL was created in 1976 and has three primary
organizational members:

NASA/GSFC, Information Systems Center
The University of Maryland, Department of Computer Science
Computer Sciences Corporation, Development and Sustaining Engineering Organization

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effects of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL
homepage at:

http://sel.gsfc.nasa.gov/

or by writing to:
Systems Integration and Engineering Branch
Code 581
Goddard Space Flight Center
Greenbelt, Maryland 20771

CONTENTS

Fage

Materials for each session include the viewgraphs
presented at the workshop and a supporting paper
submitted for inclusion in these Proceedings.

Opening

Welcoming and Al Diaz Introduction (see Preface to H. Kea paper in Session 1).
M. Szczur, NASA/Goddard

Key Note Address (not available)
A. Diaz, Director of NASA/Goddard

Session 1: The Software Engineering Laboratory — Discussant: H. Kea,
NASA/Goddard

Coddards New lntegrated Approactk to [77
H. Kea, NASA/Goddard

Baselining the New GSFC Information Systems Center: the Foundation for Feryfiable

Software Process lmprovement
- A. Parra, D. Schultz, J. Boger, and S. Condon, Computer Sciences Corporation,

V. Basili, R. Webby, M. Morisio, D. Yakimovich, and J. Carver, University of
Maryland, S. Kraft and J. Lubelczyk, NASA/Goddard

Using Experiments fo Build a Body of Knowledee

-~ V. Basili, University of Maryland

Session 2: Experimentation — Discussant: R. Webby, University of Maryland

Culrure Conflicts in Software £ngineering Technology Transfer
D. Wallace, National Institute Of Standards and Technology, and M. Zelkowitz,
University Of Maryland

An ddgpration of Experimental Design ro Emprrical Falidation of Sofiware
Engineering Theories
N. Juristo and A. Moreno, Universidad Politecnica de Madrid

LDisciplined Sofiware Engineering: Fxtending Enterprise Engineering Architectures
10 Support the OO FParadigm
F. Maymir-Ducharme, Lockheed Martin

CONTENTS (cont’d)

Session 3: Inspections — Discussant: G. Abshire, Computer Sciences Corporation

X ., National Sofiware Qrality Experiment: A Lesson in Measurement- 7992 - 7997
" D. O'Neill, Independent Consultant
X . Princples of Successiil So/tware bispections
: D. Beeson, Ki Solutions Consulting, and T. Olson, World-Class Quality
X Capture-Recaprure - Models, Methods, and the Realiyy

/ ﬁ J. Ekros and A. Subotic, Linkoeping University
. §essi0n 4: Fault Prediction — Discussant: M. Zelkowitz, University of Maryland

X Jo ’if'of/ware Lyolution and the Fault Process

C " A.Nikora, Jet Propulsion Laboratory, and J. Munson, University of Idaho
M

X w 7ﬂ/€gfd/[hg Formal Methods Into Soffware Q@ff/ddé/?/'g/ Analysis
J. Knight and L. Nakano, University of Virginia

X - / | An Adaplive Software Reliability Prediction Approact
(_ '/Z/ M. Yin, L. James, S. Keene, R. Arellano, and J. Peterson, Raytheon Systems
Company

Key Note Address (not available)

The Fatal Flaw

s T i .
v L. Peterson, Math/Computers Editor for Strence News

Session 5: Verification & Validation — Discussant: J. Lubelczyk, NASA/Goddard

.

X ﬁj /'l/aa’e/ Checking Vergication and Validation at JPL and the NASA Larrmont [V&V
7 Facilny
N F. Schneider, Jet Propulsion Laboratory, S. Easterbrook, NASA IV&V F acility,
J. Callahan and T. Montgomery, West Virginia University

X / . Using Model Checking ro Falidate A7 Planner Domain Models
2N Penix, C. Pecheur, and K. Havelund, NASA Ames Research Center
X - P&V of a Spacecrafi 's Autonomous Planner througt Fitended Automation

/77 M. Feather and B. Smith, Jet Propulsion Laboratory

—

X / _ Lerforming FVerification and Validation in Reuse-Based Software Engineering
[/, Addy, NASA/WVU Software Research Laboratory

Session 6: Embedded Systems and Safety Critical Systems — Discussant: S. Kraft,
NASA/Goddard

X o Defining and Falidating Embedded Ce omputer Sofiware Requirements Using the £CS,
D OTPM and 1PFA
J. Manley, University of Pittsburg

CONTENTS (cont’d)

Using Automaric Code Generation In the Atirtude Control FIght Sofiware

- Engmeering Frocess

D. McComas, J. O'Donnell, Jr., and S. Andrews, NASA/Goddard

i Determing Software (Safery) Levels for Safetv Critical Systenms
M. Yin and D. Tamanaha, Raytheon Systems Company

Appendix A — Workshop Attendees

Appendix B — Standard Bibliography of SEL Literature

Session 1. The Software Engineering Laboratory

Godaard’s New lntegrated Approach to 777
H. Kea, NASA/Goddard

Baselining the New GSFC lnformation Systems Center:
the Foundation for Fersfiable Software Process lmprovement
A. Parra, D. Schultz, J. Boger, and S. Condon, Computer Sciences Corporation,
V. Basili, R. Webby, M. Morisio, D. Yakimovich, and J. Carver,
University of Maryland,
S. Kraft and J. Lubelczyk, NASA/Goddard

Using Lxperiments 1o Burld a Body of Knowledpe
V. Basili, University of Maryland


~~~~~~~

e ‘%?

.;f%;,;.a; p RS ';;ﬁ} |
formation Systems Center

GODDARD’S NEW APPROACH TO
INFORMATION TECHNOLOGY

The Information Systems Center
An Overview

The 23" Annual Software Engineering
Workshop

December 2-3, 1994

By Howard E. Kea




PREFACE
By Martha Szczur

Welcome and Al Diaz Introduction

23rd GSFC Software Engineering Workshop

December 2, 1998

Hi, I’'m Marti Szczur, the Chief of the Information Systems Center, which is one of the organizations
within the Applied Engineering & Technology Directorate (AETD).

Since last year’s workshop, Goddard has undergone a significant reorganization. AETD is one of two new
directorates, made up of over 1300 Goddard engineers, including computer science professionals. The
engineers are matrixed or assigned to flight projects, science directorate activities and/or advanced
technology tasks. ISC is one of the engineering groups within AETD, and as the name implies, the
Information System Center is heavily vested in all aspects of software (from design, development, testing,
validation, integration, maintenance, and including assessment of existing software products.)

The software is applied to a broad spectrum of mission and science systems ... from command & control
of the spacecraft (both on-board and on the ground) to planning/scheduling, guidance & navigation
systems, communication support, to the processing, archival, & distribution and analysis of science data
... Software is one of the key business products within the I1SC.

And thus, my interest in software engineering is extremely high. In fact, the Software Engineering Lab,
the group hosting this workshop, resides within the ISC, and I am a strong supporter of the research they
conduct. I'm also interested in their expanding their software engineering knowledge and influence across
Goddard, as well as NASA. Because of my vested interest in SE as a computer science discipline, it is

. . . . ,rd .
quite a privilege for me to be opening this 23~ Software Engineering workshop.
I’d like to mention a recent exercise at Goddard, which involved looking ahead to the year 2003 and
defining the type of work and missions in which we would be involved. And, the future missions identified
have increasing software complexity, such as
- operation of multiple spacecraft and constellations
- distributed sensing systems
- increased on-board science processing and autonomous operations

- higher volume/higher rate of science data to process, manage, archive and distribute

- collaborative, distributed engineering and science computing environments to improve formulation and
implementation of missions, as well as to foster collaborative scientific discovery.

To meet these software challenges, It is critical that advancements in software engineering be made.
Today, the software industry has not been overly successful in consistently developing software systems
that are within budget or on time or which meet all the requirements.

For example, in a Standish Group’s 1994 study*, based on an evaluation of 8330 industry software
projects, only 16% were actually successful in being on-time, in budget and meeting all originally-specified
requirements,

A staggering 53% were “challenged”. On an average, they were (1) 189% over budget, (2) had time
overruns of 222% and (3) only 61% of originally specified requirements were met.



The other 31% of the software projects were canceled somewhere during development.

Thus, with the increase of NASA mission’s dependency on software and the increase in its’ complexity, a
focus on producing quality software, and thus software engineering, I feel, becomes a critical necessity.

And, it is many of you in this room who will move us in a direction to enable a time when we can develop
software systems which are bug-free, reusable, delivered on schedule and within cost while meeting all
requirements...on a consistent basis.

Many of the presentations over the next two days pertain to advances and lessons learned which are directly
related to the software engineering challenges we face. Ilook forward to listening and learning from the
diverse collection of international experts represented here today.

I have the privilege this morning to be introducing, Al Diaz, who is the Director of Goddard Space Flight
Center.

We are very lucky at GSFC because Al, I believe more than any other Center Director to date, has an
appreciation of the critical role software ... and in particular QUALITY software ... plays in the success of
Goddard’s missions, and he recognizes its increasing role in the future.

So, with pleasure, I welcome Al and thank him for agreeing to take time from his incredibly busy schedule

d
to open the 23r Software Engineering Workshop.

* NOTE: The Standish Group International, Inc. is a market research and advisory firm specializing in
mission-critical software and electronic commerce. Information about this study can be found on their web
site: http://www.standishgroup.com Go to the option titled “Chaos Report.”




BACKGROUND

The Goddard Space Flight Center (GSFC) Strategic Implementation Plan (SIP) was published in January
1997. Since the plan was published several centerwide activities have been initiated. One in particular
known as “Project Goddard” is responsible for one of the most significant changes that have occurred in
Goddard’s history. This was the reorganization of Codes 500 and 700. The reorganization [Reference 1]
was the result of much planning that began with an assessment of the external environment and the writing
of Goddard’s SIP followed by definition of macro level processes from which an organization that could
support those processes was derived. In today’s environment, performance, cost and schedule are three
critical elements to the successful execution of a program. The requirements have become an integral
factor throughout the development process making it necessary for close customer involvement. The
reorganization was primarily structured to more effectively focus engineering talent into teams drawn from
the different disciplines. This would facilitate being able to provide products and services which support
mission needs aligned with customer requirements.

INFORMATION SYSTEMS CENTER

The ISC was created as part of the Goddard reorganization and was located within the Applied Engineering
and Technology (AET) Directorate. Why create an ISC? The creation of ISC was to (1) focus expertise
and leadership in information system development. (2)Promote organizational collaboration, partnerships,
and resource sharing. (3)Stimulate design /development of seamless end-to-end flight and ground systems.
(4) Enable flexibility to effectively support many simultaneous projects by improved access to critical mass
of discipline expertise. (5)Enhance career growth and opportunities including multi-disciplinary
opportunities and (6) to improve communications among information system professionals. Figure 1, is an
Organizational Chart of Goddard after the reorganization showing AETD and System, Technology, and
Advanced Concepts (STAAC) as new organizations.

. o
GSFC - after reorganization e Ko
Soddard Space Flight Centey it

DIRECTOR: .t Diaz
DEPUTY DIRECTOR:  B. Townsend

ASSOCIATE DIRECTOR ASSOCIATE DIRECTOR
SPACE SCIENCES
PROGRAM
2 Hrastar M. Kics
M. Kicz
OFFICE OF HUMAN CFO
¢ Tulip
J Simpson N Abell. Deputy
f NEW I I I
EARTH SCIENCES SYSTEMS TECHNOLOGY MANAGEMENT FUGHT PROJECTS
& ADVANCED OPERATIONS
V. Salomonson CONCEPTS J. Moore
D Zukor, Deputy § S Faster Vacant, Deputy
QO Figueroa Facart, Deputy )
M. Ryschiewitsch, Deputy
APPLIED OFFICE OF FLIGHT SUBORBITAL &
SPACE SCIENCES ENGINEERING & ASSURANCE UMNIVERSITY CLASS
TECHNOLOGY PROJECT OPERATIONS
S Holt ¢ Vanek
Vacant, Deputy B Keegan W Denoon, Deputy A Torres
Figure 1.



Figure 2. Shows the AETD Organization, the Director is Brian Keegan.

AETD ORGANIZATION e
Gocdard Spaca Flight Center
AET DIRECTORATE
Director Briun Keegan
CODE
500 Deputy: Dolly Perking
Associate: Krista Paquin
BUSINESS
MANAGEMENT OFFICE
Code §01
Chiet: Alda Simpson
Associate: Grettchen Burton
[ |
MECHANICAL SYSTEMS ELECTRICAL SYSTEMS INFORMATION SYSTEMS
CENTER CENTER CENTER
Code 540 Code 560 Code 580
Chicf Ed Powers Chief 14cting): Bob Kichak Chicf: Marti Szezur
Associare: Steve Brodeur Associate: Bob Kichak Assnciate Joe Hennessy
Associate: TBD Associate: Dennis Andrucyk Assocrate: Doug McCuistion
INSTRUMENT GUIDANCE, NAVIGATION
TECHNOLOGY CENTER & CONTROL CENTER
Code 550 Code 570
Chief. Jim Mason Chief: Frank Bauer
Assocrate: Carolyn Krebs Associate: Marty Frederick
3

Figure 2.

There are five Engineering Centers within the AETD which are equivalent to Division level organizations.
Each of these engineering centers is focused on a particular engineering discipline. The ISC (Code 580) is
the engineering center focused on software engineering and computer science. The ISC mission is
[Reference 2] “to provide high value information systems products and services and to advance information
technologies, which are aligned with customer needs.” The ISC organization is shown in Figure 3 below.

ISC has 8 Branches in which each Branch is focused on critical software engineering domains that cover
the full lifecycle phase of a mission. Table 1, represents each of the Branches in the ISC and highlights
their major functional areas, products and services, customers and projects supported. More detailed
information can be found at the ISC Website, http://www.isc.nasa.gov. ISC is predominantly a matrix
organization in that many of the Branch personnel 581, 584, 586 are co-located with the project offices.
The process in which personnel are assigned is accomplished annually when the projects submit Statements
of Work (SOW) to the ISC for services. Personnel with the necessary skills and experience are then
assigned to the project from 1 to several years dependent on the duration of the project.




580 / Information Systems Center Branch Structure

Branch

Functional Area/Products

Services

Customer Projects/Org

581/ Syslems Integration and
Engincering
Lestve Bovee, Howard Kea,

Murgoras Candfiold

End-to-cnd data systems
engineering of ISC mission
systems development activitics.

Mission dircctors, ground sys/flight
ops management, sys. eng., flight prep
support, SW eng, Sys I&T, AO prep

EOSDIS. HST. STAAC. NGST,
MAP. IMAGE. TRACE, POES,
AGS, on-orbit missions

582/ Flight Software
Elvine Shell, Rav Whulev, Lisa Shears

Embedded spacecraft, instrument
and hardware component
softwares; FSW testbeds

End-to-end FSW development;
simulation siw; spacecraft
sustaining cngineering

HST. MAP, TRMM. EO-1.
SMEX. SMEX-lite, SPARTAN.
EOS AM. 'Chem, GLAS,
XRS XDS, POES, NGST, XTE,
EUVE. GRO

583 / Mission Applications
Henry: Murray, Scott Green

Off-line mission data systems
{c.g., Command man., s/c mission
and science P&S, GN&C, NCC

Sys. eng.& implementation, COTs
application, testbeds for concept
proofiprotolyping in ops environment

NCC SPSR, 157, EO-1, EOS
AMI, HST, TRACE, €930,
IMAGE SOC

584 / Realtime Softwarce
Engincering

Bark Parr. Jay Putman. John
Donohue

Real-time ground mission data
systems for 1&T and on-orbit ops
{c.g.. s/c command & conirol,
launch and tracking services)

Sys. eng.& implementation, COTs
application, simulators, testbeds for
concept proof/prototyping in ops cnv.

HST. WFF, ISTP, IMAGE.
MAP. SMEX. TRACE,WIRE,
EO-1, 187, HITCHHIKER,
SPARTAN, EOS. NGST

385 / Computing Environments
and Tcchnology
Howard FErsertke, Steve Naus

Tools and services in support of
information management

Hands-on sys admin., network
manage., businessisupport tool
develop, WWW application

EOSDIS, IFMP, (630, C930.
HST, WSC, (250, C430, HST

586 / Science Data Systems
Marv Ann Esfundiari. Mary Reph

Scicnce data systems including
data processing, archival,
distribution, analysis & info man.

Sys. eng.& implementation, COTs
application & integration, testbeds,
Tototyping

FOSDIS. LS7. TRACE. TRMM
HST

587 / Advanced Data
Management and Analysis
M Estandiari (Acting). Jim Byrnes

Advanced concept development
for archival, retrieval, display,
dissemination of science data

Next-gen req. development, testbed tor
sys evaluation, prototype products

FAST. NEAR. WIND,
ULYSSES. €632, C686, C694,
€930, 0922

588,/Advanced Architeetures &
Autonomy
Doug MeCuistion (Actingy. Julie Breed)

Technology R&D focused on
space-ground automation sys. and
advanced architectures

Sys. eng & implementation, human-
computer eng., technology cvaluations,
concept prototypes, sw eng. methods

Table 1.

NCC. STAAC, SOMO, Code
SM. EOSDIS, MIDEX. NGST

The ISC has 4 simple but very critical Strategic Goals to achieve in the next 5 years:

1. Advance leading-edge information systems technology.

2. Clearly define the scope of ISC business, and deliver high value products and services that satisfy
customer needs.

3. Build a diverse, talented, innovative, energized, internationally recognized, workforce of employees
and managers.

4. Establish open, flexible, collaborative relationships with customers and partners.

These strategic goals are aligned with the Goddard Strategic Goals.

Role of the Software Engineering Laboratory in ISC

n

Given the external drivers such as “Agenda for Change “ which promulgated the creation of the ISC, the
SEL has an opportunity to leverage its capabilities to help the ISC meet its strategic goals and objectives.
There are several areas where the SEL can be an enabler for software process improvement:[Reference 3]:

e Build an improvement organization within the ISC that will increase the competency of its software
engineering professionals, thereby increasing the quality of Goddard software systems.
Model and characterize software systems in use on the ground and onboard spacecraft.
Transfer and help tailor proven development and maintenance technologies to new domains, internal
and external to GSFC.

As a result of Goddard’s organizational changes, a new vision and mission statement and new goals and
objectives have been established for the SEL. Over the past several months a series of workshops had been



conducted with the SEL Director’s to outline and define the new direction for the SEL and still maintain its
heritage over the past 20 plus years. The SEL’s new Vision and Mission statement shown in Figure 3,
emphasizes continuous software process improvement.

Software Engineering Laboratory Vision:

To be internationally recognized as a leader for applied research in Evolutionary
Software Engineering Process Improvement.

Software Engineering Laboratory Mission:

“Serve as a World Class Laboratory dedicated to evolutionary software
engineering process improvement and serve as a clearinghouse within GSFC for
software engineering best practices. And to foster the development of highly skilled
software engineers in the 1SC and in GSFC and contractor community through
continued education and training of software development practices and
methodologies.”

Mission Objectives:

1) To study, research and roll out products from our best practices and
methodologies.

2) To provide useable and applicable products aligned with customer needs.

3) To increase visibility, size and scope.

4) To partner with other software engineering organizations.

5) To serve as clearinghouse within ISC/GSFC for Software Engineering process
improvement information.

6) To educate the software engineering community on software engineering best
practices.

7) To identify resources for funds.

8) To develop quickie products e.g. “reusable abstractions” and modularize SEL
documents into a handbook format.

9) To develop strategies for rolling out practices to customers and immersing
customers in the process.

Figure 3

The current base of SEL activities include: management of databases and producing monthly reports,
development of WEB based forms to eliminate file transfer, maintenance of SEL Library and development
of Software Engineering Courses. Current research topics include Meta-process, Baseline Process and
Core Metrics development. Short term and long term goals for the SEL have been established. They are:

SEL Short-term Goals:

1)} Software Engineering Workshop

2) Complete ISC baseline study

3) Update SEL webpage

4) Develop customer focus teams

5) Increase GSFC visibility and interaction

SEL Long-term Goals:

1) Develop a full Software engineering training development program

2) Assist the ISC in obtaining CMM level 2 & 3

3) Establish partnerships with other software Engineering process improvement organizations




Figure 4 shows the relationship of the SEL with ISC. Under the new SEL structure, the ISC Branches and
Teams would work more closely with the SEL in defining current processes and developing improved
processes. The SEL analysts’ role would expand to encompass end-to-end systems development processes,
from requirements definition through maintenance and operations. In addition, new metrics will be
developed that include the complete lifecycle of the end-to-end systems development process. An example
of software technology products supporting the end-to-end mission system is shown in Figure 5.

Nadp Example ISC Technology in KC"‘“
Goddard Space Flight Center the End'tO‘end MISSIO" DAY
Science
Satellites

|- NGST Adaptive Scheduling
! - Real-time Weather Assessment
f for Remote Sensing Spacecraft

Data Archives

Science PI's [u
*
@ ‘/!/.HsTNZK Data Warehousing\\
- Remote Instrument Control R telv-Located
- NGST Scientist’s Expert Fgmo € y-b oca ePI P
Assistant emberor T | - SMEX GDS & Automation

{ i
. i
e i - Mission Ops Automation §
{ - Java-based Remote i

; Command & Control i

i

H

-

- S/C Emergency Response System

| - TRACE Automation & ]
| Remote Notification

i Remote Instrument Control ! .

Figure 5.

As a result of the expanded responsibilities, the SEL has already begun to baseline the ISC Branch’s
products and services and software development processes and team products. This effort will establish a
basis for measuring the impact of software process improvement measures that are implemented within the
ISC. SEL is also in the process of developing a series of lectures and courses that focus on the Software
Engineering Process incorporating the CMM philosophy. The SEL will also play a key role in helping the
ISC to achieve CMM levels 2 & 3 and the presence of the SEL in ISC also provides the potential to
ultimately achieve CMM levels 4 &3.

In summary, the 23 year history of the SEL has proven that long term focus on continuous improvement
can reduce costs and produce a better product. The SEL, as a research organization must continuously
adopt to the changing environment in which it exists. Expanding the scope and support activities of the
SEL will present a great challenge, however, it will position the ISC to be able to improve Goddard’s future
systems development efforts.



References:

(1) Keegan, B. “Applied Engineering & Technology Directorate (AETD) 500,” AETD Newsletter, NASA
Goddard Space Flight Center, August 1998,

(2) ISC Management Team, “ISC Retreat Report”, St. Michaels, MD, March 1998,

(3) Pajerski, R. and V. Basili, “The SEL Adapts to Meet Changing Times,” Proceedings of the 22™
Annual Software Engineering Workshop, Greenbelt, MD, December 1997,

(4) Szczur, M., “Information Systems Center (ISC) Overview Briefing”, NASA Goddard Space Flight
Center, May 1998.

(5) Kea, H, “Software Engineering Laboratory Overview,” NASA Goddard Space Flight Center,
September 1998



866T ‘S-7 "29Q
doysyopn bulissuibug
9/1eMUOS |enuuy piSz ay |
MIIAIDAQD Uy
19]U9) SWISAS uonew.IojuT ay |

; ;w

11 0 r_umoi_n_n_< >>mz S,E !m_u_uoo




004 PUe 00§
S9p0)) JO uoijeziuebloal ay3 40} SISauU3D)

",p4eppon 133[01d,, se ydns pajeniul
Uo9( o9ABY SallIAIOR oPIMID]UaD |BIDAIS

/66T Aenuer ul paysiignd sem (dIS)
ueld uopejuawaldwi 21ba1ens Gn_mwv

193ud) Jubi4 mumn_m Em_u_uow s .r_

19]U2;) SUWIJISAS U




s.Center,

10N

C

organiza




-matiori Systems.center,

tion

(C
™
<

{ T




(6¢) 9Q< ) s
) NYOUOC] UYOf SIRDLS sl
padxg) duny ydoy Ty R AR Sy Sy

SUIDY) HONSIND)I A sho(] LIBIPUE)S Uuy AaRy Aa) Ay OUS AU

(1) L8s
SouLAE] wip SNEN DA kS ey PO NEY 1R
LIZIPURJSS] UUY AARA ISI] PACAOY ERITORITIRIN TN PANOL |

e N S i . b 8 ARLINA] SIUDH dN0g N8I

(D saybnH Ja19d
‘ABojouyoa] 1o} Jueisissy

P

8¢




LSON XHAHA SIASOTINS
POy "OWOS "OVVLS "IN

spopat “3ud ws “sadoroad 1daduod
suonENEAd SHojouydan su sndwon

-urwiny “uoneudwopdwl 3y Fud s

SANIINYDIT PAdUTAPE
puL “$<$ UONTWOINE punosg-aoeds
UO PAsNIO] (133 A50jouydd |,

PO LIS HOLSIL O] SHO(]
AOUOY
W SAUMIIYILY PIIULAPY YR

O 086D
T6OY TURO) TTEOD TSIISSATH
NI AVIN LISV

s1anpoad ad10104d HONENEAD 1S
101 PagIsal udoaAdp "bat udd-1NoN

21 OUDIIS JO UONLUTLUISSIP
R VTSI RIS AV ITRMUEIN
wawdoaaap daouod pasueapy

SOULLNY LI (SHI [ DIPUDS Ty
SIS|BUY PUR WUATRUT]Y
PIN(] PAUTAPY /RS

1SH

INIALL IOV LSTTSIASO

surdaoload
“SpagIsal tuoneasaul 3 uonedtdde
SO ‘uonvudwadw 3 BUd TSAS

UBL OJUL 3 SISS[BUR UOANYLASIP
‘[earyare ‘Furssadsord viep
SUIPN|OUL SWUISAS LIEP UG

2N NADJ\ LIIPURIS Y L]
SURIERCR TG IR ITETRINENIINY

ISH 0D T0£T) IS TLSH
€6 7090 "IN TSIASO!

uonearidde mmm "dofaadp
[001 1oddns ssauisng ageue
YIOAVDU TUIWPE SAS UO-SpUBH

JudwdSeURWL UORULIOJUL
10 1oddns ul $2014198 pUE S[OO |,

SHPN ARG .bv\\.bu.f.\,ﬂ\ \H:g.::\\
Bojouydd | pue
sjuawitodiau sunndwo ) - <Ry

LSHONSOTNVIAMVIS
NI LR TLS T -0
ST TIDVIL XHINS TdVIN
CIDVINL LS LA CLSH

“aua sdo ur durdiotoadeoad 1dasuod
10§ spaqisal ‘sdojefnus ‘uoneaijdde

-

S 100 “uoneiudwaidwl W sud SLY

(S2011105 TUIYDRI] pUE Youne]
“|041U0D 2 PUBLILLOD J/s “§'2)

sdo 11q10-u0 pue ] 39| 10J SWASAS -
RIEP LOISSIW PUNOIS dW-{edy -

D WG]

N:\NQ\» :3:::,\ :4\ :‘\A\ \::N
:::u. CT,:L

ALY OG dWi ey [ +]¢

DOS HDVINI
0C6) THIVUL TLSH TTIAY
SO -0 LST USdS JIN

TUSWUOIA U0 SA0 U1 ouldAIo104djo0Id
1d2ou02 10 $paqisd ‘uonedijdde
s 1O ‘uonuuawdfduwi 2 3ud "sAg

DON DPND 'S¥d ‘3pualos pue
UOISSIL D/S ““uetd puEwo.) “B

SWRISAS BIEP UOISSIU DU 110

WD) JJOI§ RLIALY AUIL]
sueijeaddy uotssIn / €8¢

OMD AN
LN CTSDN STO 'SUX SN
QYD WY N INY SOT
NVIUVAS H-XHINS TXHINS
‘1-07 TWINYL ‘dVIN “1SH

FULI2OUITUD TUIUIRISNS
Jes220eds (/s uonenuis
quawdoaadp M S pus-01-puy

éuﬁme MS m&g&o@

SUOISS UL UQHO-U0 "§DY
S0 TIVIL TIDVINTD dVIN
LSON TOVVLS TESHSIASO]

doid OV " 11 fﬁ Jud M “aoddns
daad 1By ~Sud 's8s udwaSeuew sdo
WYF11/S S punoss “$10192.41p UOISSTA

108 :ﬁmﬁa [onap stk
oam:: Uﬁ 10 c;:uowmm

mm_ si] ,CEE 4 DY J1oys Al
@._wgaom ﬁw:w m 788

23] \:B.xcmw ..wu..@m .ﬁ?md
Buupauiduy

8a0/s193fo.a Jowoysn)

SIIAIAG

21NJONIS YOURAY 19)UI)) SUIISAS uone




"S3DIAIBS pue sjonpo.d jJo AIBAIPP dAIIDBYO
pue I19jsueu} /uoisnjul Abojouyda) buijqeus ‘sassadoud pappe
-anjeA quaniyje ‘oaisuodsal yym ssauisng e »jij sajelado HS]

*Joadsal jenjnw pue 3sn.aj uo paseq pue aAleloqe]jod
‘a1q1xayj ‘uado aue siawolsnd yyum sdiysuonejad s,0SI

"S9JIAIDS pue
sjonpoud ‘suoin|os pajudLio-12WOo)ISNd ‘DAI}RAOUUI SIBAIPRP DST
"S12WO03SND [euoijnlisul
Hoddns 03} se1bojouyda} uoijew.iojul padueApe 10} pue 3dudIds
oeds pue yjieg ul s12wWo3isnd s,pieppoo o) Abojouyoa}
uoljeuwriojul @bpa-builind 1oy Juiod €20} pue Japea| a2yl S DSI
‘sanijioe)
pue sjoo} juswdojaaap Ja1w4d pue ~m?_m>>m pue u:mEn_c_gm_u
‘Buluie.) ‘suonowoud 3qIPaLd pue Jiey [JUBUCIIAUD HIOM
buluiea] ‘ajqixa|y e buipinoid adioyd jo taAojdwd ayy si 2SI .
; ‘siobeuew
pue mww>o_n_Em JO dd.10pI0M _umNEmoum._ Ajjeu

UOISSIA ncm co_m N m




Slaulied pue siawolsnd

Uum sdiysuonea. anneloqe|j0d 31gixa|4 ‘uado ysijgeis3
| ‘siebeuewl

pue saaAojdws Jo s210y10m ‘paziuboda. Ajleuoneussyu
‘pazibisus ‘sAneAOUUl ‘pajUD|R) ‘9SI9AIP B pling

‘Spasu

13WO0ISNd AJsies jeyy seoIAIas pue spnpoud anjeA ybiy
19AIIBP pue ‘ssauisng DST Jo adods auyy sulep Al1es|)

*‘ABojouUyYD3] SWISAS uonew.ojul sbps-buipes| agueapy

0} 91e A3U} S1eBA § IXBU BUY Ul SABIYDE 0]
S|eo9 21633e.S [eond Aisa Ing ojdwis b sey DSI E

I91U2) SWISAS UONeLL




"SUOISSIW YSYN
a3} Joddns 03 pasn a1emijos ayl buiuieyulew pue
buip|ing 10} 3jqisuodsal 1010e.qU0D Jofew ay] Se DS e

pue ‘uonejuswiiadxs pue ssa00.4d
2JeM1JOS Ul S3dadU0D PadURApPe JO SNJ0J dUJ S AN *

‘SWIANSAS 31eMY0S JURAJ|DI BU)
JO ||e jo Jabeuew pue 4asn a3yl se 4g4/D4SH/VSYN ®

19|04 A9Y e buiAe|d suoneziueblo
943 JO yoes yum ‘(DSD) uonelodio) saouaids Jendwo)d

pue ‘(lNN) puejAlel Jo Alisisaiun ayy ‘D4SD/VSYN
US9M1aq pawlio) sem diystauped v ,ﬁﬁ:noﬁ pue

SS920.4d 91eM0os ||etano ayy buinoidwi pue mcicﬂm‘_ws un
Jo 9sodind ay3 10J 9/6T Ul UEmmb Sem ._mm m:

113)U27) SWIS.




. Sa1bojopoyiaw pue saoioeld Juswdojsasp 91PM]JOS

JO Bulurely pue uonednpa panunuod ybnoayy ANUNWWOD
10J0BIJUOD pue D4SH ul pue DST ay) ul siaulbua 21emyyos
Pa1IXs Alybiy Jo Juswdolaasp ay) 493504 03 puy *sadnoeld
1599 burissuibua a1emyos 10) H4SH ulyIMm asnoybuniesd

e Se 9AISS pue Juswaaoidwil ssao0.4d buliesuibus

91eM}OS AleuonnjoAs 03 pajedipap Alojeloqe sse

PHOM B Se 2AIS,, TUOISSIN AI0JBIOGeT bUMSoUIbUg S1eMjos

JuswAoldw] ssad04d buliasuibuy mx_@stom \Cmco;:_o@
Ul ydueoasal paljdde uoj 1apea| e se paziuboda. >=mcopmc3.8:_
9( 0] TUOISIA AIOJeI0qe] oc:mmc_ocm Em\stom




JusWdo|aAap
SJLII9|Al 910D pue SS300.d auljaseg ‘ssa20.4d-e1aln

2pN|ouUl $21d0] Ydodeasal Jualing
'S9S1N0D) bulissuibug 21em1os JO JusWdoaAlp
Aleldiq 73S JO aoueuquiewl

~ Jajsuen
3|l4 1eUlWlD 0} SWI0) paseq gaM JO JuawdojpAsp

s110da.
Ajyauow buipnpolad pue saseqelep JO ucmEmmmcmE

:9pN|oul SaNIAIDe 73S JO mmmn_ Emt:u m; ._.

[9]U2) SWIAISE




19]Us) ARAI SaWy Ylim
uolnjeloge||o) ul wetboud asnay HST 1oddng

uondessju] pue AJ|IGISIA D4SD 8seaudu]
S9S1N0D Aep T 10ys dojanac
Swea) Snd0J JawWoisnd n_o_m>mm
mmman_m \'@1epdn
uljaseg umH Em_n_Eou

doysyIopn mc:mm:_mcm 21eM]]

511107 STIoIsAS Hopediomy




93019,) SWDISAS

suoneziuebio JuswaAoldw
SS900.d bunisauibuy a1emos
19410 yum sdiysisuned ysijqeis3

€ 13 ¢ SIPAI] ININD
ansind 0} DST 10} S}jauaq 23ebiISOAU]

weboud .EmEn_o_m>m. butures )
burieauibug aiemyos ||nJ e m_o_m>wo

S|e0o wJay-buo



'D4SD 0] |eulaIxXa pue |eutaul ‘sulewop
M3U 03 Salbojouyda) soueujuIBW pue
JuswdojoAsp uaaoad Jojie) djay pue Jajsued |

*}jeJdaoeds pieoquo pue punotb ayj uo asn
Ul SWIS)SAS 91eMJ0S 9z14330R1RYD puk |9PO|A

.mEBm\»m

S) JO >uc8mn_Eou a3 9sea.nul 1M EE Umﬁﬁ.
°U3 UIgIMm uoneziuebio EmEm>oEE_ ue U__:my

121U3;) SWISAS WO




[013U0D JUBWINIISU| BJOWDY -

walsAg asuodsay Aouabiswig 9/g - UOHEJHION Sjouiay
[04}UO0D R pUBWIWOD ® Uoljewoiny 30vyl -
9]0WaY paseq-eAe -
uonewolny sdo UuoiIssi - -
uonjewoiny ® sdo X3S - Id 10 JaquIB)y | O =

pajeso-Ajgjoway

juelsIssy
Hadx3 s 3s1jualdg 1SON -
[O4JUO0 D JUBWINIISU| BJOWdY -

>

Buisnoyaiepn eyed MZA/LSH - \v

/px
_ I \ m;n_mocm_ow
s8AIY0IY Ble(]

yesoaoedg Buisuag ajoway 103
JUBLISSISSY 19YJRIN Dll}-|Eay
Buiinpayss aandepy LSON

7, sey||eres

aoUsI0g

3|0y UOISSIN PU3-01-pus




ABojouydd | pue spudtuuosAuz] Sunndwo )

g
0

ULIDAUITUY]
AILNJOS WY

NURINNNR B 1Hg|
RRITRIRIS

suoday] sapiaoig
AJ01150day se saAIeg
BJB(J SOAIYIIY PUB §193[[0))
$9SSI00.IJ SIUIWINIO(]

SSOM0U

suonedddy $$A20) . C o e ; ; , m«,,, QUIT ST AT IV
Nestddy ,w 0l | JOHERE : paunny SISA[RUY

QG I paugd =
UOISSIA] | Pouuod PUE JUSWITRURA]
§ . $9s59001d saurjay L / GIed padurApy

: SISAJeuUe SULI0JIo]
SaIpnys Su3iso(g

=3

SULIDOUITUY 29 uoneISauy swalsig




Baselining the New GSFC
Information Systems Center:
The Foundation for Verifiable
Software Process Improvement

A. Parra, D. Schultz, J. Boger, S. Condon,
cSC
R. Webby, M. Morisio, D. Yakimovich,
J. Carver, M. Stark,
University of Maryland
V. Basili,
Fraunhofer Center Maryland and University of Maryland
S. Kraft,
NASA/GSFC

Abstract

This paper describes a study performed at the Information System Center (ISC) in NASA
Goddard Space Flight Center. The ISC was set up in 1998 as a core competence center in
information technology. The study aims at characterizing people, processes and products of the
new center, to provide a basis for proposing improvement actions and comparing the center
before and after these actions have been performed. The paper presents the ISC, goals and
methods of the study, results and suggestions for improvement, through the branch-level portion
of this baselining effort.

Introduction

At the beginning of 1998, a major reorganization of software engineering functions took place
within the NASA Goddard Space Flight Center. A new “Information Systems Center” (ISC) was
created with the objective of concentrating and consolidating Goddard’s Information Technology
(IT) capabilities into one organizational unit.

Within the aegis of this new organization, sits the Software Engineering Laboratory (SEL) [1,7],
a twenty-three years old consortium of process and product improvement specialists from three
organizations: NASA Goddard itself, the University of Maryland and Computer Sciences
Corporation. The SEL had previously focused most of its efforts within the Flight Dynamics
Division (FDD), performing process and product improvement studies and software engineering
experiments. With the reorganization of software activities at Goddard, its scope now expands to
the entire 1SC. Therefore there was a need to better understand the wider context that the SEL
now found itself within.



Consequently, a “baseline” study was initiated by the SEL in April 1998. The aim of the baseline
was to characterize or profile the ISC in terms of its people, processes and products. Each branch
and many teams within the ISC were studied for the purpose of completing an initial baseline
study. We emphasize the word “initial” to indicate that this study is not a detailed baseline in the
sense of capturing extensive focussed data about one aspect of the ISC’s operations. Rather it is a
baseline that will provide an overall high-level profile of the new organization.

Many previous baselines have been conducted within the FDD, as well as at the level of Goddard
Code 500 [4], Goddard as a whole [5] and NASA as a whole [6]. The questionnaires developed
by the baselining team were heavily based on these earlier studies to enable comparison. Where
practical, this paper will compare data from ISC with earlier studies.

This paper documents preliminary data and observations that the SEL has made in baselining the
ISC. The ultimate goals of the baselining study are to identify areas for process and product
improvement of benefit to Goddard, as well as interesting and novel research areas to pursue.
This paper will begin by elaborating upon the goals of the study. It will continue by describing
the methods adopted (and their constraints), the data collected, and the preliminary results of the
work. The paper concludes with some recommendations for ISC and suggestions for future work
for the SEL.

The ISC
Quoting from the ISC home page [8]:

“The Information Systems Center (ISC) is an innovative center of expertise in the implementation of
seamless, end-to-end information systems in support of NASA programs and projects, and
specifically the GSFC Earth Science, Space Science and Technology focus areas. The ISC provides
leadership and vision in identifying and sponsoring new and emerging information systems
technologies.”

The ISC is organized in eight branches, each with a unique function. Refer to Figure 1for the
organization structure of ISC and Table 1 for the associated products and services. The meaning
of boxes line styles will be explained later. The work is organized in various manners: within
these branches exist teams that are producing software products and services, there are personnel
(and sometimes teams) matrixed to other ISC branches or other Codes at GSFC, and there are
cross-branch teams that serve all the ISC with representation from the branches. The detailed
organizational structure is explained in [3].

Certain terminology (noted in Italics) is used in this environment and in this paper, especially
terminology related to organizational structure. Basic organizational structure is broken down
from highest level to lowest, GSFC is divided into 9 directorates, including the Applied
Engineering and Technology Directorate (AETD), within that there are 5 Centers, including the
Information Systems Center, within that the eight branches mentioned above, within those
branches, teams of individuals supporting projects, such as the Earth Observing System (EOS).
Sometimes a person or persons is matrixed from one organizational entity to another, so that one
group manages the work, while the person(s) maintains their original organizational alliances.



Code 580
Information Systems Center

I | I I : I | I I
Code 581 || Codes82 || Code583 || Codess4 || Code85 || Codesgs || Code367 || Code 588
Systems Flight Mission Real-Time | | Computing | | Science Adv. Data Adv.
Integration & Software Applications Software Environments Data Management | | Architectures
Engineering Engineering | | &Technology Systems & Analysis | | & Automation

Figure 1 - Organizational Structure of the ISC

Branch Code

Branch Name

Products/Services

581 Systems Integration and End-to-end data systems engineering of
Engineering 1SC mission systems development
activities
582 Flight Software Embedded software products for on-
board data handling; management and
control of flight hardware
583 Mission Applications Off-line mission data systems
{command management, spacecraft
mission planning and scheduling,
science planning, etc.)
584 Real-Time Software Tools and services in support of
Engineering information management. Real-time
ground mission data systems for 1&T
and on-orbit ops (e.g., s/c command
and control, launch, and tracking
services)
585 Computing Environments Tools and services in support of
and Technology information management. Hands-on
system administration, network
management, WWW applications
586 Science Data Systems Data processing, archival distribution,
analysis and information management
for science data systems
587 Advanced Data Advanced concept development for
Management and Analysis archival, retrieval, display, and
dissemination of science data
588 Advanced Architectures Technology R&D focused on space-

and Automation

ground automation systems and
advanced architectures

Table 1. Products and Services of the ISC Branches




Goals for Baselining

The major objective of the baselining study is to gain an understanding of the ISC as to allow us
to identify areas for process and product improvement. The philosophy behind the effort is to
characterize and understand the new organization before attempting to introduce any new
technology or process improvements. From the understanding, we seek to find a basis to assess
improvements, which can then be packaged for wider integration into the business. Figure 2
highlights the role of baselining (the bottom rectangle) in the broader context of process and
product improvement according to the Experience Factory paradigm [1].

PACKAGE

Integrate the improvement into your business

» Update standards
+ Refine training
+ Tailor process based on experiments

Iterate ///////’—’

ASSESS

Select/define, implement, & evaluate an improvement locally,
Goals « Will particular reading techniques improve quality?

* Will OOT lead to higher reuse?
UNDERSTAND « Will a different testing technique reduce costs?

Gather, sift, and analyze data to build baselines

* Identify software characteristics
» Characterize process used
« Define goals

EXAMPLES

TIME >

Figure 2 - Role of Baselines in Process and Product Improvement

Methods Used

The following methods, already used in the COTS Study [9], were used.

First, a number of questions and measures have been developed, starting from the high level
goals and using the Goal Question Metric (GQM) approach [2], to collect information about
ISC’s processes, products and people. They gather both quantitative and qualitative information
— some of the data are numeric and highly factual (e.g. staff numbers), whereas other data
represent informed opinion (e.g., expectations of future change). The aim is to be able to
characterize the software products, processes and people within the organization, with adequate
qualitative context to meaningfully interpret the hard quantitative data.

Questions and measures have then been organized in a questionnaire and a structured interview
[10]. The interview being constrained to no more than 30 — 45 minutes covered the qualitative
data. The questionnaire was devoted to quantitative data that were less subject to interpretation.



To enforce consistency, guides for filling questionnaires and performing interviews were
developed too [10].

After validating these tools with pilots, they were used to collect data from branch heads and
team leaders. The process was the following.

During the interview, the Interviewer asks questions following the outline of the Interview
Guide. The Scribe takes notes and employs a tape recorder, if acceptable to the Interviewee, to
aid in preparation of the interview report. The Interviewee is told that the result of the interview
is the interview report, which will not be considered final until the Interviewee had read and
approved it. At the end of the interview the Scribe may ask some clarification questions. The
Interviewer gives a copy of the Questionnaire, which asks questions of a detailed, numeric nature
that don't lend themselves well to open-ended, face-to-face discussion to the Interviewee, and
requests that the Questionnaire be completed within two weeks.

After the interview, the Scribe prepares an interview report, consisting of brief summaries of the
Interviewee's responses to the questions on the standard Interview Guide. The Interviewer
reviews the notes. Once reviewed they are sent to the Interviewee for concurrence. At this stage
of the process, the interview report is considered approved. Tape recordings were not kept as the
approved interview report serves as the result of the interview.

At the end of the initial interview, the Interviewer schedules a follow-up interview. The purpose
of the follow-up is to go over the questionnaire that the interviewee has completed, and resolve
any items where either the questions weren't clear to the interviewee, or the responses are unclear
to the interviewer.

About the data

The baseline study collects data at two levels within the ISC: the branch and team levels. The
current status of the study is that we have completed the branch data collection and analysis, and
are currently finalizing the team-level data collection and the team-level analysis is in progress.
Therefore this paper will only report on the results from the branch-level data.

The branch-level data were collected from the management of each branch. Our aim at the
branch-level data collection stage was to build an overall characterization of the organization,
with a wide range of factors (e.g. process, people, and product) considered. The intent is that we
will perform more detailed baselines on specific factors in a subsequent study, as and when more
accuracy is required.

The consequence is that the data reported in this paper have varying degrees of reliability. In
some cases, they are actual data (e.g. head count). In other cases, they may be derived data. For
example, a question asking how much effort was spent on software maintenance versus
development was sometimes answered by managers going through their roster and counting how
many people did maintenance versus development. In other cases, the data may represent only
“guesstimates”. Sometimes we asked questions seeking data that they do not collect, so they had
to estimate. In all cases, we are dealing with a new organization, so there is not a body of
historical data, or even established data collection procedures in many cases.

As we analyze the data, we will report on the expected reliability.



Findings

Domains

Figure 3 presents a depiction of sample application domains in the ISC, in contrast to the more
focused domains of the FDD. Whereas the FDD was primarily concerned with attitude, orbit and
mission planning applications, the ISC must now be concerned with such diverse pursuits as
science data visualization and embedded flight software. The new ISC is a much more
heterogeneous organization than the FDD, so the need to understand the context of the data
collected is paramount. Direct comparison of branch to branch will be meaningless without an
appreciation of the context within which the data were collected.

Figure 3. Sample Application Domains in ISC and FDD

Domains and organization

As mentioned above, the Information Systems Center is organizated into eight branches. Figure
1 shows the basic organizational structure of the ISC. We have found that several branches
appear to have a functional domain focus (e.g. flight software), specifically these are 582, 583,
584 and 586, designated in Figure 1 with double borders. Those are contrasted with branches
that deal primarily with technology domains (e.g. advanced architectures), specifically 585,587
and 588. Code 581 is probably neither in the technology nor functional camp, they deal primarily
with the management of systems integration activities, this uniqueness is indicated in Figure 1
with a dashed border.



Matrixing and projects common to branches

In the questionnaire, branch management were asked to list the projects with which their branch
was involved. Figure 4 presents the common projects by branch. These are larger projects such
as the Hubble Space Telescope (HST) or Landsat-7, where several branches are involved.
Another question was the number of staff belonging to the branch but working outside it (or
matrixed). On average, 63% of ISC staff is matrixed. Both facts above suggest that the
organisation by branches is in some sense virtual, while the projects rather than the branches
control the process. This was also confirmed by comments from branch managers. An
implication of this for the SEL is that to introduce any process improvement, it would appear
necessary to consider how to influence the project to adopt the new technology.

581 582 583 584G S84W 585 586 587 588
HST ® ® ®

SMEX

EOS

EQO-1

ISTP ® o
mpg @
Landsat7 o

JSWITCH. e

ULDB

Figure 4 - Common Projects by Branch

Characterization of branches

Figure 5 presents the variation in staff numbers by branch. The total number of civil servants in
ISC is 249, based on an aggregation of the questionnaire data. This total has been verified by a
check against the overall ISC roster. The total number of contractors in ISC is over 308 — the
exact number is difficult to determine because some branches were unable to specify their exact
number of contractors’,

'Staffing Numbers - The count of civil servants and subcontractors working for a branch or team is not unique, as
they can report to an entity (say the team) but be paid by another (another team or branch or project). Most
interviewees did not have both data, and reported the best estimate they had. An effort to collect the most accurate
data is underway and will be reported in the ISC Baselining final report.



Staffing

(see note on staffing numbers)

100 +—— —— 1 |[dContractor Staff
B In-House Staff

Number of
employees 80

581 582 583 584W 584G 585 586 587 688 Average

Branch

Figure 5 - Staff Numbers by Branch

Most notable here is that there is one very large branch (582), more than 2/3’s of its personnel
are contractors; one very small branch (587), with no contractors whatsoever; and the rest are
mid-sized.

It is worthwhile to compare these figures to the SEL’s 1992 baseline of Code 500 [4]. Code 500
at that time contained responsibility for most of the same functional and technology domains that
the ISC contains today. Code 500, however, did not employ all of the GSFC software personnel
working in these functional and technology domains; the Engineering Directorate (Code 700)
employed some of them. On the other side of the balance sheet, however, we must note that
some of the 1992 employees of Code 500 were analysts and other “non-software” types. These
personnel were largely transferred to “Centers” other than the ISC in the recent GSFC
reorganization. With these differences between the Code 500 of 1992 and the ISC of today kept
in mind, let us proceed. In the 1992 baseline of code 500, it was found that approximately 1,600
of 5,000 staff (including contractors) were performing software-related functions (development,
maintenance, etc). The FDD had 700 staff, of which 250 were in software. This comparison (see
Figure 6) indicates that the ISC has approximately twice as many IT-related staff as FDD.
However, they are significantly smaller in size than were the code 500 software people in 1992.



. e )

ilesoftwarestaff
tSoftwa'estaff

Code 500 FDD- ISC -
-1992 1992 1998

Figure 6 — Code 500, FDD and ISC staff

Branch management was also asked to estimate effort distribution within three categories:
Development, Maintenance and Other. The results for this question are shown in Figure 7. The
average is weighted for head-counts in the respective branches. Notable contrasts here are 581°s
large amount of “other” activity — as a systems integration management branch they do hardly
any software development themselves. Also notable is 584 (Goddard real-time software)’s large
maintenance effort relative to development effort, and 586 (science data systems)’s large
development effort relative to maintenance.

In comparison with the code 500 baseline, maintenance effort in the code 500 was a lower
proportion of total effort (24%) as opposed to ISC’s 35% of effort devoted to maintenance. This
is probably explained by the smaller amount of legacy code that the ISC is responsible for
maintaining, in comparison to code 500.

Figure 8 turns our focus on software development effort alone, broken into the activities
‘requirements analysis’, ‘design’, ‘coding’, ‘testing’ and ‘other’. It is apparent that at this macro
process level, there is relatively little difference between ISC’s average development effort
distribution and that of the 1992 FDD. The ISC do a little more requirements, but that is the only
major difference. Again, we should stress that these data are management estimates, not the
actual recorded effort for each employee. In some cases, managers used heuristics such as
counting the number of testers in the organization to come up with the proportion of testing
being done. But did this then account for developers’ unit testing? We do not know.



100%

90%

80%

70%

60%

50%

40%

30%

20% +¢

10%

0%

581 582 583 584w 584 585 586 587 588 Average

Branch

Development@Maintenance OOther l

Figure 7 - Overall Effort by Branch

100% ~- -

80% A

80% A

40%

20% A

0% 4

T T T T T u T T v T
581 582 583 584W 584 585 586 588 Average FOOD

Branch

FRequiremenlsAnalysns mDesign mCoding Tesling Domeﬂ

Figure 8 - Development Effort by Branch

One possible interpretation of this data is that organizations that are more outwardly focused,
have had to put more effort into the requirements stage (and hence proportionally less in other
areas). Code 585 (science data systems) is an example of this — much of their work is for the
science community as a whole, a fairly diverse and remotely located user population. Code 583



(mission applications) has a much more defined user base and develops software such as oft-line
mission scheduling systems that can be precisely specified more easily up-front.

Some further observations about process, product and knowledge levels. Note that all branch
averages are weighted by the number of staff in the branch.

The percent of branches (including contractors) using “defined, written, advocated
software processes” varied from 10-95%, with an average of 45%

The percent of branches (including contractors) using “software standards” ranged from
0-95%, with an average of 57%

The number of COTS products used varied from 2-10 with an average of 5.1. Note that
these figures are probably deflated due to some branches listing “DBMSs”, or “lots” in
response to this question.

Overall the use of C++, Java and Ada for new development is increasing, relative to
Assembly, Fortran and C. 12 languages are used across ISC as a whole.

The most significant causes of errors in operational software were (in the following order
of importance): ‘changing requirements’, ‘missing requirements’, ‘misinterpreted
requirements’, ‘coding errors’, ‘interfaces’, ‘design errors’ and ‘environment problems’.

Most branches consider themselves well-informed about ‘prototyping’, ‘object-oriented
technology’, ‘inspections/walkthroughs’, and ‘COTS Integration’

Most branches consider themselves to have relatively little knowledge about ‘formal
methods’ and ‘defect causal analysis’, except 586 science data systems

Most branches consider themselves to have relatively little knowledge about ‘information
hiding’ except 584W real-time systems (Wallops)

All branches consider themselves to have relatively little knowledge about ‘Cleanroom
techniques’.

Only three branches produce ‘lessons learned’ documents at the end of a project.
Interestingly, one of these (584W) also produce a document called ‘a day in the life’
which serves to portray a typical day’s activities for a developer. This is considered
useful for training purposes.

In the process improvement area, several of the branches have ongoing activities:

Code 581 is funding this ISC baselining study, and is also leading the ISO 9000 ISC
certification. It is also pursuing an effort to define a core metrics set with the SEL and
Code 300.

Code 582 is encouraging reuse of both flight software and ground simulators, is looking
into additional opportunities for automatic code generation, and is pursuing the use of
COTS.

Code 583 has implemented the CORE TEAM approach, which is a type of process
improvement, and some parts of the branch are involved in some level of data collection.



e Codes 584 and 587 are currently defining their processes, as a prelude to improving them.
Code 584 expressed a desire to define a multi-level process structure, to facilitate
modularization of processes.

e Code 585, although it has not initiated a formal process improvement program, is using
guidelines in certain areas. The Code 585 personnel prefer to use guidelines, rather than
standards, because of the greater flexibility that guidelines provide.

e Code 586 is engaged in process management activities, including implementation of ISO
9001.

e Code 588, for the most part, has not initiated any process improvement activities; they
are, however, currently working on a Technology Management Plan that is oriented
toward 1SO 9000. Code 588 is also trying to move the designation of their ultimate
customer organization earlier in the process of making a system operational.

Analysis and further activities

The 1SC is a new organization that supports many of the key projects at NASA Goddard. 1t is
divided into management, technology and functional branches that represent a wide variety of
technical and functional domains. Here we try to summarize the main results of the baselining
effort and their implications for further SEL activities.

Diversity

The preliminary results of this baseline show that each branch is very different in terms of
personnel, process and product characteristics. The variations in effort distribution, languages
used, and products developed by the different branches provide surface indications of the
diversity among the branches. The implications are that it will not be possible to apply the same
models for cost and quality to each branch, as we could do to some extent within the more
homogeneous FDD. To understand how cost and quality relate, we must study them in the
context of each branch, team and/or project. Then, each model must be constructed and
calibrated to the given context in question. The development of different models however is not
the only challenge; these models must be capable of integration so that aggregated information
can be meaningfully provided for the whole of ISC.

The NASA Core Software Metrics Initiative

The SEL and GSFC/NASA’s Software Assurance Technology Center (SATC) [11] are currently
pursuing an initiative to define and implement a core set of software metrics, common to the
whole of NASA. For well over a year these two GSFC organizations have been working
together to define a core set of metrics.

The baselining has confirmed that there is an essential need for core metrics within the ISC. Due
to the diversity of the ISC, branches, teams and projects use different reporting units for metrics
such as product size, effort and defects. The core metrics initiative defines a set of metrics
capable of being used in different contexts, yet capable of providing a common abstraction level
to allow aggregation at the ISC level. This is essential not only for monitoring purposes, but also
for the model building needs mentioned above.

12



At this time, a draft version of the Core Metrics set, developed by the SEL and SATC, is
currently under review by the NASA Software Working Group. At the time this paper is written
the SATC and SEL web pages do not specifically call out the Core Metrics, in future that
information should be assessable through SATC and SEL web pages [11,12]. An experiment
within the ISC to validate these Core Metrics would serve both the NASA Core Metric Initiative
and the ISC’s proactive drive toward process and product awareness and improvement.

Matrixing

The ISC is organized in branches and teams, but branch and team staff work, at 63% on average,
on projects outside the scope of ISC, managed and funded by NASA Codes other than 500. In
particular, 95% of the staff belonging to Code 582 is matrixed outside ISC.  This is not
surprising, as the ISC is meant to offer IT services to all of GSFC and NASA. However, a
number of issues are raised.

e System and software engineering. Many projects where matrixed staff works are system
projects where software is only a part. The system issues (processes, technologies,
interfaces) should be taken into account in software processes too.

e Ownership of processes and rights to modify. When projects are funded and ruled outside
ISC, ISC may or may not be free to decide on processes, standards, and organizations to
be used.

e Diffusion of information. Matrixed personnel could physically work outside ISC, with
increased difficulties in communication and diffusion of information about the SEL and
technology transfer or software process improvement projects.

The SEL could try to understand in more depth these issues with further studies. However, it
seems that, for the purposes of assessment, characterization, and model building, the team and
the projects are the more suitable units to be considered. This implies that, as projects and teams
are volatile, with a life span of months, measures and models should be highly versatile and
adaptive.

Also, the concept of Experience Factory, defined and used by the SEL in the past years, could
need some adaptation. Several levels of experience, and several levels of learning loops, can be
identified: at the individual, team, branch and ISC levels.

Finally, if projects and teams are volatile, and branches are virtual, individual persons are the
most stable and valuable resources to base process and product improvement on. Approaches
such as Watt Humphrey’s Personal Software Process (PSP) could be used and adapted to the ISC
context. Specifically, the PSP does not consider sharing experiences and improvements with
peers, and should be extended in this direction to integrate concepts from the Experience
Factory.

CoTs

All branches report the use of COTS. The SEL should support teams and branches in COTS
related activities: evaluation and selection, testing and certification, interaction with producer,
documentation and diffusion of information. The SEL’s experience in COTS processes will be
of benefit to the ISC and the diversity of the ISC offers opportunities for case studies to further

13



validate the COTS process model [9]. This study concluded with recommendations for further
work to build cost models, risk analysis, and process models. Since, COTS remains a buzzword
with different meanings for different people. Another action for the SEL is the definition of a set
of terms and classification tools for the different concepts and artifacts currently considered
under the umbrella term COTS.

Finally, COTS should be considered in the broader context of reuse and related technological
and organizational issues: domain analysis and engineering, product line engineering, reusable
libraries, frameworks, design patterns, mechanisms and standards (Com, Corba, Active-X, Java
RMLI, Java beans, etc.).

Internal technology transfer

There would seem to be opportunities for greater synergies within ISC to do internal technology
transfer so that the advanced technologies and research efforts of branches 585, 587 and 588 are
successfully transitioned into practice in branches 582, 583, 584 and 586.

The past work of the SEL within Goddard has shown the need to understand, assess and package
technology to insure its successful introduction. Possibly the SEL in code 581 can play a role in
furthering a controlled and systematic transfer of this technology to the functional branches, as
well as helping insure that the advanced technology branches work in relevant areas amenable to
future technology transfer.

The SEL could assist by defining a methodology to evaluate if and how a technology
successfully applied in one context (branch, team, project) can be transferred to another context.

Reuse and frameworks

Several products in ISC are developed and mantained for years and possibly customised in
different versions. The overall cost of a product during the complete service cycle can be
decreased by technologies such as architecture and framework-based reuse. For example Code
582 (flight software) is exploring this road by developing a new architectural design for on-board
shuttle navigation control.

The SEL could offer support to organize, measure and document such efforts with two main
goals. Promote the success of the reuse effort inside a branch. And acquire methodological
experience to replicate the same effort in other branches (see also the Internal Technology
Transfer subsection).

Requirements instability

Requirements, and specifically requirements instability, are a common source of problems for
ISC teams. Several lines of intervention are available for the SEL:

¢ Experimentation with novel techniques for requirements capture and management.

e Adaptation of and experimentation with of techniques for early detection of defects in
requirements, such as requirement reading techniques.

o Adaptation of and experimentation with new lifecycles for early verification of
requirements, such as prototyping, iterative lifecycles, joint application development.

14



Acknowledgements

This work was funded by NASA grant NCC-5170, and the following NASA Contracts: CNMOS
and CSOC.

References

[1] V. R. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, S. Waligora, The Software
Engineering Laboratory - an Operational Software Experience Factory, International Conference
on Software Engineering, May, 1992, pp. 370-381.

[2] R. Basili, H. D. Rombach, The TAME Project: Towards Improvement-Oriented Software
Environments, IEEE Transactions on Software Engineering, vol. SE-14, no.6, June 1983.

[3] Kea H., Goddard’s New Integrated Approach to Information Technology, 23™ Software
Engineering Workshop, Nasa/GFSC, December 1998.

[4] NASA, Profile of Software Within Code 500 at Goddard Space Flight Center, Technical
report RO1-92, 1992.

[5] NASA, Profile of Software at the Goddard Space Flight Center, Technical report RPT-002-
94, June 1994,

[6] NASA, Profile of Software at NASA, Technical report RPT-93, December 1993.

[7] NASA, An Overview of the Software Engineering Lab, Technical report SEL-94-005,
December 1994.

[8] NASA/ISC, The ISC home page, http://isc.gsfc.nasa.gov/default.htm.

[9]NASA/SEL, SEL COTS Study, Phase 1, Initial Characterization Study report, SEL-98-001,
August 1998.

[10] NASA/SEL, ISC Baselining documentation, http://sel.gsfc.nasa.gov/doc-st/tech-
st/sew23/baselining.htm

[11] NASA/SATC, The SATC home page, http:/satc.gsfc.nasa.gov/
[12] NASA/SEL, The SEL home page, http://sel.gsfc.nasa.gov/




DASD Yery 'S
N S0 11 SIS ‘N TOATED) [ “YIIAOWIINEX “(I ‘OISO ‘Nl “AqQ9M "4 TIISEd "A
0§D ‘uopuo)) S “1a8og [ ‘ZNYIS ‘A ‘Bled 'V

JUIWIAOId U] SSII0IJ d18M)JOS
JQRIJLII A 10J UOnEpPUNO Y I,

J31U3)) SW3ISAS Uojjplio

*mﬂ_ﬂamﬁx i

LA | LY

DASD MIN Y} sutuIpseq



(S661) VSVN Jo djgoid
($661) DASD Jo d[yoid P

(€661) 005 90D DASD Jo dyoid
(] Jo saurjaseq AUBA

SAIPNIS duIfdsey JOLI



sauljaseq pjinq o) ejep azAjeue B ‘YIS ‘Iayjes

SIUAWdAOIAWI dInseaw 01 S[apow dO[oA(J
o S[e03 SUIJI(J e
$59001d pasn $s3201d JZ113108IRY)) »
1onpoxd SOTISLIdIORIBYD AIBMIJOS AJTIIUIP] »

uoneziuedio

®ourjoseg e s ey



sjeob auyaq »
pasn ssadoud azusjoeseyy .
sonsuvloeIeyd aiemyos Ajiuapj «

sauljoseq pjing o} ejep azAjeue pue ‘Yis ‘isyjes

251502 aonpas anbiuyday Bunsa) JUIIYIP € |IIM ANV.LSH3IANN

¢asnal Jaybiy o) pea] LOO IIIM «
¢ fnjenb anoadun sanbiuyosy Huipeaul Jejnoied [JIAA ¢ S|eo9)

Ajje20] Juswanoiduil ue ajenjerd @ quawa|duwi ‘auljoposlds

sjuawiiadxa uo paseq ssao01d iojie] « SSASSY
Buiuted) aujay «

spiepuejs ajepdn » ajelal|

ssauisnq 1noA ojui yuswaroiduwil ayj ajeiboju|

JOVMOVd

JuawdA0IdUI] $S3001J UT saul[ased JO 3]0y

S3TdNVX3



syuamwraAoxdur ssao01d pue jonpoiad sjqensuowap
- S11JOUdq UL} SU0|

DSI Y1 JO Surpuelsiopun 19119q

U@E@E mQOmmE o.:wﬂm
M mw - mwmmﬁmﬂ [88R(a)] to:m
¢ ¢ &

Swiea] 79 sayoueiq s
UOTIBZLID}OBIBYD QUI[ASB( B 90NPOI]




19p1A0Id BIBP UM S)NSAI 29 BIeP AJLIOA
BIEP JZA[RUY
SAITRUUONSAN() —
SMITAIUI PAINONNS —
\V SOPOW OM] UT UOTJBULIOJUT JOUJeD)
wed | —
youerq —
S[9AQ] 0M] J& UOTJBRULIOJUT JYJer) .

Apnys durfaseq DS JO SPOYIRN



OSI 10} S[opotu pIinyg

TUQWIUOIIAUS HST APNIS

Sul[aseq ST ystqnd

SINSAI BIBP [QAJ] Wed) pue yodouelq dredwo))

S1INSAI [OAJ[ Wed) JZA[eue
‘UOTIOBIIXI BIBD [9AJ] wed) d9[dwo)

3ururaseq 2y} 10} sdaig 1XoN



d3en3ue ]

SONIAIIY dIBMIIOS
93es() SLOD
SUIXINRIA

surewo(J uonesrddy

DS1JO ANSISAIQ Y],




surewo( uonedrddy



01

DSI SPISINO PIXLNEIA

ST UTgIIM pOXIIEpy 70%

SUIXLIIBIA

PoxLIIEN
JON




11

surewo(] uonedrddy anbrun
1oddns s1onpoid S 10D SIAL(] \/

sayouriq

[[& SSOJo’ 33esn S 1O AABIH o [~

J

93es(] SLOD,




1eS

t

1v1

Software Act

101J9 Judd12d

12

Test Other

Design Code
B Branch A - 90% dev./ 10% maint.

B Branch B - 50% dev./ 40% maint.

Requirements
Analysis




el

AIEMIJOS MAN dIeM1JoS SunsIxy

+ R

§63)7

BAR[

XIJA 93en3ue]




14!

Joueiq B UIYIIM UOTIN[OAD - XIJA a3en3ue |
S[opowr o[dnnuu - SANIANIR IBM]JOS

SAIpNIS anuUNUO9 ‘anssr juepodwr - 100D
I9Jsuel] 4o, 10J Ayrunyroddo - Surxiney
S[opowr d[dnynur - UTBWO(] 9SIQAI(]

suonedrduwy 29 SUOISN[OU0)) [eNIU]



Sl

SUOTIBZIUBSIO SUIA[OAD UI JIBIZIUI 29 OB O], —
WeRIS0IJ JUAWIA0IAW] SSID0IJ

SIIp§ S.LOD -
S[OPOW 199J9P/UOIIBWIISS 1SO))

QOUALIAAX SuruIfasey uo paseq
snd0,J pasodoig



e
—

2 -t/

Using Experiments to Build a Body of Knowledge

Victor Basili Forrest Shull Filippo Lanubile
Fraunhofer Center Maryland Institute for Advanced Computer Studies Dipartimento di Informatica
and Computer Science Dept. Computer Science Dept. Universita' di Bari
University of Maryland University of Maryland Via Orabona, 4
College Park, MD 20742, USA College Park, MD 20742, USA 70126 Bari, ltalia
basili@cs.umd.edu fshull@cs.umd.edu lanubile@di.uniba.it
Abstract

Experimentation in software engineering is important but difficult. One reason it is so difficult is that there
are a large number of context variables, and so creating a cohesive understanding of experimental results
requires a mechanism for motivating studies and integrating results. This paper argues for the necessity of a
framework for organizing sets of related studies. With such a framework, experiments can be viewed as
part of common families of studies, rather than being isolated events. Common families of studies can
contribute to important and relevant hypotheses that may not be suggested by individual experiments. A
framework also facilitates building knowledge in an incremental manner through the replication of
experiments within families of studies.

Building knowledge in this way requires a community of researchers that can replicate studies, vary context
variables, and build abstract models that represent the common observations about the discipline. This
paper also presents guidelines for lab packages, meant to encourage and support replications, that
encapsulate materials, methods, and experiences concerning software engineering experiments.

1. Introduction

Experimentation in software engineering is necessary. Common wisdom, intuition, speculation and
proofs of concepts are not reliable sources of credible knowledge. On the contrary, progress in any
discipline involves building models that can be tested, through empirical study, to check whether the
current understanding of the field is correct'. Progress comes when what is actually true can be separated
from what is only believed to be true. To accomplish this, the scientific method supports the building of
knowledge through an iterative process of model building, prediction, observation, and analysis. It requires
that no confidence be placed in a theory that has not stood up to rigorous deductive testing [21]. That is,
any scientific theory must be (1) falsifiable, (2) logically consistent, (3) at least as predictive as other
competing theories, and (4) its predictions have been confirmed by observations during tests for
falsification. According to Popper, a theory can only be shown to be false or not yet false; researchers only
become confident in a theory when it has survived numerous attempts made at its falsification. This
paradigm is a necessary step for ensuring that opinion or desire does not influence knowledge.

Experimentation in software engineering is difficult. Carrying out empirical work is complex and time
consuming; this is especially true for software engineering. Unlike manufacturing, we do not build the
same product, over and over, to meet a particular set of specifications. Software is developed and each

! For the purpose of this paper, we use the definitions of some key terms from [15] and [1]. An empirical
study, in a broad sense, is an act or operation for the purpose of discovering something unknown or of
testing a hypothesis, involving an investigator gathering data and performing analysis to determine what the
data mean. This covers various forms of research strategies, including all forms of experiments, qualitative
studies, surveys, and archival analyses. An experiment is a form of empirical study where the researcher
has control over some of the conditions in which the study takes place and control over the independent
variables being studied; an operation carried out under controlled conditions in order to test a hypothesis
against observation. This term thus includes quasi-experiments and pre-experimental designs.

A theory is a possible explanation of some phenomenon. Any theory is made up of a set of hypotheses. A
hypothesis is an educated guess that there exists (1) a (causal) relation among constructs of theoretical
interest; (2) a relation between a construct and observable indicators (how the construct can be observed).
A model is a simplified representation of a system or phenomenon; it may or may not be mathematical or
even formal; it can be a theory.



product is different from the last. So, software artifacts do not provide us with a large set of data points
permitting sufficient statistical power for confirming or rejecting a hypothesis. Unlike physics, most of the
technologies and theories in software engineering are human-based, and so variation in human ability tends
to obscure experimental effects. Human factors tend to increase the costs of experimentation while making
it more difficult to achieve statistical significance.

Abstracting conclusions from empirical studies in software engineering research is difficult. An
important reason why experimentation in software engineering is so hard is that the results of almost any
process depend to a large degree on a potentially large number of relevant context variables. Because of
this, we cannot a priori assume that the results of any study apply outside the specific environment in
which it was run. For isolated studies, even if they are themselves well-run, it is difficult to understand how
widely applicable the results are, and thus to assess the true contribution to the field.

As an example, consider the following study:

e Basili/Reiter. This study was undertaken in 1976 in order to characterize and evaluate the
development processes of development teams using a disciplined methodology. The effects of the
team methodology were contrasted with control groups made up of development teams using an "ad
hoc" development strategy, and with individual developers (also "ad hoc"). Hypotheses were proposed:
that (BR1) a disciplined approach should reduce the average cost and complexity (faults and rework)
of the process and (BR2) the disciplined team should behave more like an individual than a team in
terms of the resulting product. The study addressed these hypotheses by evaluating particular methods
(such as chief programmer teams, top down design, and reviews) as they were applied in a classroom
setting. [7]

This study, like any other, required the experimenters to construct models of the processes studied, models
of effectiveness, and models of the context in which the study was run. Replications that alter key attributes
of these models are then necessary to build up knowledge about whether the results hold under other
conditions. Unfortunately, in software engineering, too many studies tend to be isolated and are not
replicated, either by the same researchers or by others. Basili/Reiter was a rigorous study, but
unfortunately never led to a larger body of work on this subject. The specific experiment was not
replicated, and the applicability of the hypotheses in other contexts was not studied. Thus it was never
investigated whether the results hold, for example:
o for software developers at different levels of experience (the original experiment used university
students);
if development teams are composed differently (the original experiment used only 3-person teams);
e if another disciplined methodology had been used (i.e., were the benefits observed due to the particular
methodology used in the experiment, or would they be observed for any disciplined methodology?).

2. A Motivating Example: Software Reading Techniques

Yet even when replications are run, it's hard to know how to abstract important knowledge without a
framework for relating the studies. To illustrate, we present our work on reading techniques. Reading
techniques are procedural techniques, each aimed at a specific development task, which software
developers can follow in order to obtain the information they need to accomplish that task effectively [2, 3].
We were interested in studying reading techniques in order to determine if beneficial experience and work
practices could be distilled into procedural form, and used effectively on real projects. We felt that reading
techniques were of relevance and value to the software engineering community, since reading software
documents (such as requirements, design, code, etc.) is a key technical activity. Developers are often called
upon to read software documents in order to extract specific information for important software tasks, e.g.
to read a requirements document in order to find defects during an inspection, or an Object-Oriented design
in order to identify reusable components. However, while developers are usually taught how to write
software documents, the skills required for effecting reading are rarely taught and must be built up through
experience. In fact, we felt that research into reading could provide a model for how to effectively write
documents as well: by understanding how readers perform more effectively it may be possible to write
documents in a way that facilitates the task.



However, the concept of reading techniques cannot be studied in isolation. Like any other software process,
reading techniques must be tailored to the environment in which they are run. Our aim in this research was
to generate sets of reading techniques that were procedurally defined, tailorable to the environment, aimed
at accomplishing a particular task, and specific to the particular document and notation on which they
would be applied. This has led a series of studies in which we evaluated the following types of reading
techniques:

e Defect-Based Reading (DBR) focused on defect detection in requirements, where the requirements
were expressed using a state machine notation called SCR [13, 22].

e Perspective-Based Reading (PBR) also focused on defect detection in requirements, but for
requirements expressed in natural language [4, 16].

e Use-Based Reading (UBR) focused on anomaly detection in user interfaces [27].

e Seccond Version of PBR (PBR2) consisted of new techniques that were more procedurally-oriented
versions of the earlier set of PBR techniques. In particular, we made the techniques more specific in all
of their steps [24].

e Scope-Based Reading (SBR) consisted of two reading techniques that were developed for learning
about an Object-Oriented framework in order to reuse it {10, 23].

A framework that makes explicit the different models used in these experiments would have many benefits.
Such a framework would document the key choices made during experimental design, along with their
rationales. The framework could be used to choose a focus for future studies: i.e., help determine the
important attributes of the models used in an experiment, and which should be held constant and which
varied in future studies. The ultimate objective is to build up a unifying theory by creating a list of the
specific hypotheses investigated in an area, and how similar or different they all are.

Using an organizational framework also allows other experimenters to understand where different choices
could have been made in defining models and hypotheses, and raises questions as to their likely outcome.
Because these frameworks provide a mechanism by which different studies can be compared, they help to
organize related studies and to tease out the true effects of both the process being studied and the
environmental variables.

3. The GQM Goal Template as a Tool for Experimentation

Examples of such organizational frameworks do exist in the literature, e.g. [9, 17, 20]. For the purpose of
this paper we find the Goal/Question/Metric (GQM) Goal Template [8] useful. The GQM method was
defined as a mechanism for defining and interpreting a set of operational goals using measurement. It
represents a top-down systematic approach for tailoring and integrating goals with models of software
processes, products, and quality perspectives, based upon the specific needs of a project and organization.

The GQM goal template is a tool that can be used to articulate the purpose of any study. It ties together the
important models, and provides a basis against which the appropriateness of a study's specific hypotheses,
and dependent and independent variables, may be evaluated. There are five parameters in a GQM goal
template:
o object of study: a process, product or any other experience model
o purpose: to characterize (what is it?), evaluate (is it good?), predict (can I estimate something in
the future?), control (can I manipulate events?), improve (can | improve events?)
e focus: model aimed at viewing the aspect of the object of study that is of interest, e.g., reliability
of the product, defect detection/prevention capability of the process, accuracy of the cost model
o point of view: e.g., the perspective of the person needing the information, e.g., in theory testing the
point of view is usually the researcher trying to gain some knowledge
e context- models aimed at describing environment in which the measurement is taken

For example, the goal of the Basili/Reiter study, previously described, might be instantiated as:
To analyze the development processes of a 1) disciplined-methodology team approach, 2) ad hoc team
approach, and 3) ad hoc individual approach
for the purpose of characterization and evaluation



with respect to cost and complexity (faults and rework) of the process
from the point of view of the developer and project manager
in the context of an advanced university classroom

Due to the nature of software engineering research, instantiated goals tend to show certain similarities. The
purpose of studies is often evaluation; that is, researchers tend to study software technologies in order to
assess their effect on development. For our purposes, the point of view can be considered to be that of the
researcher or knowledge-builder. While studies can be run from the point of view of the project manager,
i.e. requiring some immediate feedback as to effects on effort and schedule, published studies have usually
undergone additional, post-hoc analysis.

The remaining fields in the template require the construction of more complicated models, but still show
some similarities. The object of study is often (but not always) a process; researchers are often concerned
with evaluating whether or not a particular development process represents an improvement to the way
software is built. (E.g.: Does Object-Oriented Analysis lead to an improved implementation? Does an
investment in reviews lead to less buggy, more reliable systems? Does reuse allow quality systems to be
built more cheaply?) When the object of study is a process, the focus of the evaluation is the process’ effect.
The experimenter may measure its effect on a product, that is, whether the process leads to some desired
attribute in a software work product. Or, the experimenter may attempt to capture its effect on people, e.g.
whether practitioners were comfortable executing the process or found it tedious and infeasible. Finally, the
context field should include a large number of environmental variables and therefore tends to exhibit the
most variability. Studies may be run on students or experts; under time constraints, or not; in well-
understood application domains, or in cutting-edge areas. There are numerous such variables that may
influence the results of applying a technique.

For the remainder of this paper, we will illustrate our conclusions by concentrating on studies that
investigate process characteristics with respect to their effects on products. A GQM template for this class
of studies is:
Analyze processes to evaluate their effectiveness on a product from the point of view of the
knowledge builder in the context of (a particular variable set).

For particular studies in this class, constructing a complete GQM template requires making explicit the
process (object of study), the effect on the product (focus), and context models in the experiment. Making
these models explicit is necessary in order to understand the conditions under which the experimental
results hold.

For example, consider the GQM templates for the list of reading technique experiments described in the

previous section. There are many ways of classifying processes, but we might first classify processes by

scope as:

¢  Techniques (processes that can be followed to accomplish some specific task),

e Methods® (processes augmented with information concerning when and how the process should be
applied),

e Life Cycle Models (processes which describe the entire software development process).

Each of these categories could be subdivided in turn. The set of techniques, for example, could be classified

based on the specific task as: Reading, Testing, Designing, and so on. We have found it helpful to think of

the range of values as organized in a hierarchical fashion, in which more general values are found at the top

of the tree, and each level of the tree represents a new level of detail. (Figure 1)

Selecting a particular type of process for study, our GQM template then becomes:
Analyze reading techniques to evaluate their effectiveness on a product from the point of view of
the knowledge builder in the context of a particular variable set

? The definitions of "technique” and "method" are adapted from [5].



Process

Life Cycle Model Method Technique
Walk-
Waterfall spiral . . . Inspection Through - Reading Testing

Figure 1: A portion of the hierarchy of possible values for describing software

processes.

The reading technique experiments were concerned with studying the effect of the reading technique on a
product. So, the model of focus needs to specify both how effectiveness is to be measured and the product
on which the evaluation is performed.We find it useful to divide the set of effectiveness measures into
analysis and construction measures, based on whether the goal of the process is to analyze intrinsic
properties of a document or to use it in building a new system. Each of these categories can be further
broken down into more specific types of process goals, for which different effectiveness measures may
apply (Fig. 2). For example, the effectiveness of a process for performing maintenance can be evaluated by
how that process effects the cost of making a change to the system. The effectiveness of a process for
detecting defects in a document can be measured by the number of faults it helps find. Of course, many
more measures exist than will fit into Figure 2. For instance, rather than measure the number of faults a
defect detection process yields, it might be more appropriate to measure the number of errors’, or the
amount of effort required, among other things.

Effectiveness

Analysis Construction
Defect A :
Usability N Reuse Maintenance
Detection
# of 4§ of 4 of Cost of Cost of Cost of
faults errors ancmalies finding integrating making a
detected detected detected components components change

Figure 2: A portion of the hierarchy of possible values for
describing the effectiveness of software processes

Similarly, a software document can be classified according to the model of a software system it contains (a
relatively well-defined set) and further subdivided into the specific notations that may be used (Fig.3). The
main purpose of organizing the possible values hierarchically is to organize a conception of the problem
space that can be used by others for classifying their own experiments. The actual criteria used are
somewhat subjective; naturally there are multiple criteria for classifying processes, effectiveness measures,
and software documents, but we have selected just those that have contributed to our conception of reading
techniques.

3 Here we are using the terms "faults” and "errors" according to the IEEE standard definitions [14], in
which "fault" refers to defects appearing in some artifact while "error” refers to an underlying human
misconception that may be translated into faults.



Document

Requirements Design Code S
1 D /E\
Natura s¢Rr o a;a low pje . o Struetured 00 o
Language Diagrams Oriented

Figure 3: A portion of the hierarchy of possible values for describing software

documents.

Thus a GQM template for the PBR experiment could be:
Analyze reading techniques to evaluate their ability to detect defects in a Requirements Document
written in English from the point of view of the knowledge builder in the context of a particular
variable set .

A GQM goal is not meant to be a definitive description, but reflects the interests and priorities of the
experimenter. If we were to study the process model for the reading techniques in each experiment in more
detail, we would see that each technique is tailored to a specific task (e.g., analysis or construction, etc.)
and to a specific document. This is what characterizes the reading techniques and distinguishes them from
one another. Thus the process goals used to classify measures of effectiveness in Figure 2 can be easily
adapted to describe the processes themselves (Figure 4). The distinction between analysis and construction
process goals can apply directly to processes. That is, we hypothesize that analysis tasks differ sufficiently
from construction tasks that, along with differences in the way they may be evaluated for effectiveness,
there may also be different guidelines used in their construction. Thus figures 2 and 3 can also be
mechanisms for identifying process model attributes. They should be accounted for in the process model as
well as the effect on process.

Process Goal

Analysis Construction

Defect Usability e Reuse Maintenance

Detection

Figure 4: A portion of the hierarchy of possible values for describing the goal of

a software engineering process.

Thus we can say that we are:
analyzing a reading technique for the purpose of evaluating its ability to detect defects in a natural
language requirements document

or we can say that we are:
analyzing a reading technique ailored to defect detection in natural language requirements for the
purpose of evaluation.

It depends on whether we are emphasizing the definition of the process or of its effectiveness.

In linking goal templates to hypotheses, we can think of the process model (object of study) as the
independent variable, the effect on product (focus) as the dependent variable, and the context variables as
the variables that exist in the environment of the experiment. The differences or similarities between
experimental hypotheses can then be described in terms of these hierarchies of possible values. For
example, consider the studies of DBR and PBR. In both cases, the process model was focused on the same



task (defect detection); although the notation differed, both were also focused on the same document
(requirements). If all other attributes for process, product, and context models were held constant, we could
begin to think of hypotheses at a higher level of abstraction. That is, instead of the hypothesis:
Subjects using a reading technique tailored to defect detection in natural language
requirements are more effective than subjects using ad hoc techniques for this task
The following hypothesis might be more useful:
Subjects using reading techniques tailored to defect detection in requirements are more
effective than subjects using ad hoc techniques for this task.
The difference between these hypotheses is that the focus of the study is described at a higher level of
abstraction for the second hypothesis (requirements) than for the first (natural language requirements).

This difference in abstraction makes the second hypothesis more difficult to test. In fact, probably no single
study could ever give us overwhelming evidence as to its validity, or lack thereof. Testing the second
hypothesis would require some idea of what types of requirements notation are of interest to practitioners.
Building up a convincing body of evidence requires the combined analysis of multiple studies of specific
reading techniques for defect detection in requirements. But the effort required to formulate the hypothesis
and begin building a body of evidence helps advance the field of software engineering. At best, the
evidence can lead to the growth of a body of knowledge, containing basic and important theories
underlying some aspect of the field. At worst, the effort spent in specifying the models forces us to think
more deeply about the relevant ways of characterizing software engineering models that we, as researchers,
are implicitly constructing anyway.

The above discussion should not be taken to imply that the attributes identified in Figures 1 through 4 are
the only ones that are important, or for which hierarchies of possible values exist. To choose another
example, in specifying the model of the context it is almost always important to characterize the experience
of the subjects of the experiment. The most appropriate way of characterizing experience depends on many
things; two possibilities are proposed in Figure 5.

Experience

Students Professicnals

Experience

Never used Learned Applied Applied Applied
process process in a process on process on 2- process on >3
before class one project 3 projects projects

Figure 5: Two possible value hierarchies for measuring subject experience.

The trees shown in Figure 5 present two different ways of characterizing experience. The first is a simpler
way of characterizing the attribute that distinguishes only between subjects who are still learning software
engineering principles versus those who have applied them on real projects. The second hierarchy attempts
to place finer distinctions on the amount of experience a subject has applying a particular process. Each
may be appropriate to different circumstances.[FS1]

4. Replicating Experiments

In preceding sections of this paper, we have tried to raise several reasons why families of replicated
experiments are necessary for building up bodies of knowledge about hypotheses. Another reason for
running replications is that they can increase the amount of confidence in results by addressing certain
threats to validity: Internal validity defines the degree of confidence in a cause-effect relationship between
factors of interest and the observed results, while external validity defines the extent to which the



conclusions from the experimental context can be generalized to the context specified in the research
hypothesis [11]. In this section, we discuss replications in more detail and look at the practical
considerations that result.

Our primary strategy for supporting replications in practice has been the creation of lab packages, which
collect information on an experiment such as the cxperimental design, the artifacts and processes used in
the experiment, the methods used during the experimental analysis, and the motivation behind the key
design decisions. Our hope has been that the existence of such packages would simplify the process of
replicating an experiment and hence encourage more replications in the discipline. Several replications
have been carried out in this manner and have contributed to a growing body of knowledge on reading
techniques.

4.1. Types of Replications

Since we consider that replications may be undertaken for various reasons, we have found it useful to
enumerate the various reasons, each of which has its own requirements for the lab package. In our view the
types of replications that need to be supported can be grouped into 3 major categories:

1. Replications that do not vary any research hypothesis. Replications of this type vary none of the
dependent or independent variables of the original experiment.

1.1. Strict replications (i.e. replications that duplicate as accurately as possible the original
experiment). These replications are necessary 1o increase confidence in the validity of the
experiment. They demonstrate that the results from the original experiment are repeatable, and
have been reported accurately by the original experimenters.

1.2. Replications that vary the manner in which the experiment is run. These studies seek to
increase our confidence in experimental results by addressing the same problem as previous
experiments, but altering the details of the experiment so that certain internal threats to validity
are addressed. For example, a replication may vary the order of activities to avoid the possibility
that results depend not on the process used, but on the order in which activities in the experiment
are completed.

The attempt to compensate for threats to internal validity may also lead to other types of changes.
For example, a process may be modified so that the researchers can assess the amount of process
conformance of subjects. Although the aim of the change may have been to address internal
validity, the new process should be evaluated in order to understand whether unanticipated effects
on process effectiveness have resulted. Thus such a replication would fall into the second major
category, discussed below.

2. Replications that vary the research hypotheses. Replications of this type vary attributes of the
process, product, and context models but remain at the same level of specificity as the original
experiment.

2.1. Replications that vary variables intrinsic to the object of study (i.e. independent variables).
These replications investigate what aspects of the process are important by systematically varying
intrinsic properties of the process and examining the results. This type of experiment requires the
process to be supplied in sufficient detail that changes can be made. This implies that the original
experimenters must provide the rationales for the design decisions made as well as the finished
product. For example, researchers may question whether the specificity at which the process is
described affects the results of applying the process. In this sense, the study of PBR2 may be seen
as a replication of the study of PBR, in which the level of specificity of the process was varied
but all other attributes of the process model remained the same.

2.2. Replications that vary variables intrinsic to the focus of the evaluation (i.e. dependent
variables). Replications of this type may vary the ways in which effectiveness is measured, in
order to understand for what dimensions of a task a process results in the most gain. For example,
a replication might choose another effectiveness measure from those listed in Figure 2,
investigating whether a defect detection process is more beneficial for finding errors than faults.



Other aspects of the focus model might be varied instead, e.g. a process might be evaluated on a
document of the same type but different notation to see if it is equally effective (see Figure 3).

2.3. Replications that vary context variables in the environment in which the solution is
evaluated. These studies can identify potentially important environmental factors that affect the
results of the process under investigation and thus help understand its external validity. For
example, replications may be run using the same process and product models as the original
experiment but on professionals instead of students (see Figure 5) to see if the same results are
obtained.

3. Replications that extend the theory. These replications help determine the limits to the effectiveness
of a process, by making large changes to the process, product, and/or context models to see if basic
principles still hold. We discussed replications in the previous category as replacing the value of some
variable (e.g. document on which the process was applied, Figure 3) with another, equally specific
value (e.g. SCR requirements instead of English-language requirements). Replications in this category,
however, can be thought of as replacing an attribute of a process, product, or context model with a
value at a higher level of abstraction (i.e. from a higher level in the hierarchy). Again using Figure 3,
researchers may choose to study whether a type of process is applicable to requirements documents in
general, rather than limiting their scope to a specific kind. The type of hypotheses associated with such
replications was discussed in section 3.

4.2 Implications for Lab Package Design

In software engineering research, there has been a movement toward the reuse of physical artifacts and
concrete processes between experiments. This is indeed a useful beginning. The cost of an experiment is
greatly increased if the preparation of multiple artifacts is necessary. Creating artifacts which are
representative of those used in real development projects is difficult and time consuming. Reusing artifacts
can thus reduce the time and cost needed for experimentation. A more significant benefit is that reuse
allows the opportunity to build up knowledge about the actual use of particular, non-trivial artifacts in
practice. Thus replications (and experimentation in general) could be facilitated if there were repositories
of reusable artifacts of different types (e.g. requirements) which have a history of reuse and which,
therefore, are well understood. (A model for such repositories could be the repository of system
architectures [12], where the relevant attributes of each design in the repository are known and described.)

A first step towards this goal is the construction of web-based laboratory packages. At the most basic level,
these packages allow an independent experimenter to download experimental materials, either for reuse or
for better understanding. In this way, these packages support strict replications (as defined in section 4.1),
which require that the processes and artifacts used in the original experiment be made available to
independent researchers.

However, web-based lab packages should be designed to support more sophisticated types of replications
as well. For example, packages should assist other experimenters in understanding and addressing the
threats to validity in order to support replications that vary some aspects of the experimental setup. Due to
the constraints imposed by the setting in which software engineering research is conducted, it is almost
never possible to rule out every single threat to validity. Choosing the “least bad” set of threats given the
goal of the experiment is necessary. Lab packages need to acknowledge this fact and make the analysis of
the constraints and the threats to validity explicit, so that other studies may use different experimental
designs (that may have other threats to validity of their own) to rule out these threats.

Replications that seek to vary the detailed hypotheses have additional requirements if the lab package is to
support them as well. For example, in order for other experimenters to effectively vary attributes of the
object of study, the original process must be explained in sufficient detail that other researchers can draw
their own conclusions about key variables. Since it is unreasonable to expect the original experimenters to
determine all of the key variables a priori, lab packages must provide rationales for key experimental
context decisions so that other experimentalists can determine feasible points of variation of interest to
themselves. Similarly, lab packages must specify context variables in sufficient detail that feasible changes



to the environment can be identified and hypotheses made about their effects on the results.

Finally, in order to build up a body of knowledge about software engineering theories, researchers should
know which experiments have been run that offer related results. Therefore, lab packages for related
experiments should be linked, in order to collect different experiments that address different areas of the
problem space, and contribute evidence relevant to basic theories. The web is an ideal medium for such
packages since links can be added dynamically, pointing to new, related lab packages as they become
available. Thus it is to be hoped that lab packages are “living documents” that are changed and updated to
reflect our current understanding of the experiments they describe.

Lab packages have been our preferred method for facilitating the abstraction of results and experiences
from series of well-designed studies. Interested readers are referred to existing examples of lab packages:
[25, 26]. By collecting detailed information and results on specific experiments, they summarize our
knowledge about specific processes. They record the design and analysis methods used and may suggest
new ones. Additionally, by linking related studies they can help experimenters understand what factors do
or do not impact effectiveness.

4.3. The Experimental Community

A group of researchers, from both industry and academia, has been organized since 1993 for the purpose of
facilitating the replication of experiments. The group is called ISERN, the International Software
Engineering Research Network, and includes members in North America, Europe, Asia, and Australia.
ISERN members publish common technical reports, exchange visitors, and organize annual meetings to
share experiences on software engineering experimentation’. They have begun replicating experiments to
better understanding the success factors of inspection and reading.

The Empirical Software Engineering journal has also helped build an experimental community by
providing a forum for publishing descriptions of empirical studies and their replications. An especially
noteworthy aspect of the journal is that it is open to publishing replicated studies that, while rigorously
planned and analyzed, yield unexpected results that did not confirm the original study. Although it has
traditionally been difficult to publish such “unsuccessful” studies in the software engineering literature, this
knowledge must be made available if the community is to build a complete and unbiased body of
knowledge concerning software technologies.

5. Conclusions

The above discussion leads us to propose that the following criteria are necessary before we can begin to

build up comprehensive bodies of knowledge in areas of software engineering:

1. Hypotheses that are of interest to the software engineering community and are written in a context that
allow for a well defined experiment;

2. Context variables, suggested by the hypotheses, that can be changed to allow for variation of the
experimental design (to make up for validity threats) and the context of experimentation;

3. A sufficient amount of information so that the experiment can be replicated and built upon; and

4. A community of researchers that understand experimentation, the need for replication, and are willing
to collaborate and replicate.

With respect to the Basili/Reiter study introduced in section 1, we can note that while it satisfied criteria |
and 3, it failed with respect to criteria 2 and 4. It was not suggested by the authors that other researchers
might vary the design or manipulate the processes or criteria used for evaluation (although the analysis of
the data was varied in a later study [6]). Nor was there a community of researchers willing to analyze the
hypotheses even if suggestions for replication had been made.

In contrast, the set of experiments on reading, discussed in a working group at the 1997 annual meeting of

4 More information is available at the URL http://wwwagse.informatik.uni-ki.de/ISERN/isern.html

10



ISERN [18], is an example that we have built up a body of knowledge by independent researchers working
on different parts of the problem and exposing their conclusions to different plausible rival hypotheses. We
have shown in this paper that experimental constraints in software engineering research make it very
difficult, and even impossible, to design a perfect single study. In order to rule out the threats to validity, it
is more realistic to rely on the "parsimony" concept rather than being frustrated because of trying to
completely remove them. This appeal to parsimony is based on the assumption that the evidence for an
experimental effect is more credible if that effect can be observed in numerous and independent
experiments each with different threats to validity [11].

A second conclusion is that empirical research must be a collaborative activity because of the huge number
of problems, variables, and issues to consider. This complexity can be faced with extensive brainstorming,
carefully designing complementary studies that provide coverage of the problem and solution space, and
reciprocal verification.

It is our contention that interesting and relevant hypotheses can be identified and investigated effectively if
empirical work is organized in the form of families of related experiments. In this paper, we have raised
several reasons why such families are necessary:

e To investigate the effects of alternative values for important attributes of the experimental models;

e To vary the strategy with which detailed hypotheses are investigated;

e To make up for certain threats to validity that often arise in realistically designed experiments.

Discussion within the experimental community is also needed to address other issues, such as what
constitutes an “acceptable” level of confidence in the hypotheses that we address as a community. By
running carefully designed replications, we can address threats to validity in specific experiments and
accumulate evidence about hypotheses. However, we are unaware of any useful and specific guidelines
that concern the amount of evidence that must be accumulated before conclusions can confidently be drawn
from a set of related experiments, in spite of the existence of specific threats. More discussion within the
empirical software engineering community as to what constitutes a sufficient body of credible knowledge
would be of benefit.

Building up a body of knowledge from families of experiments has the following benefits for the software

engineering researcher:

e It allows the results of several experiments to be combined in order to build up our knowledge about
software processes.

e It increases the effectiveness of individual experiments, which can now contribute to answering more
general and abstract hypotheses.

e It offers a framework for building relevant practical software engineering knowledge, organized
around the GQM goal template or another framework from the literature.

e It provides a way to develop and integrate laboratory manuals, which can facilitate and encourage the
types of replications that are necessary to expand our knowledge of basic principles.

e It helps generate a community of experimenters, who understand the value of, and can carry out, the
needed replications.

The ability to carry out families of replications has the following benefits for the software engineering

practitioner:

e It offers some relevant practical SE knowledge; fully parameterizing process, product, and context
models allows a better understanding of the environment in which the experimental results hold.

e It provides a better basis for making judgements about selecting process, since practitioners can match
their development context to the ones under which the processes are evaluated.

e It shows the importance of and ability to tailor “best practices”, that is, it shows how software
processes can be altered by meaningful manipulation of key variables.

e It provides support for defining and documenting processes, since running related experiments assists
in determining the important process variables.

e It allows organizations to integrate their experiences by making explicit the ways in which experiences
differ (i.e. what the relevant process, product, and context models are) or are similar, and allowing the



abstraction of basic principles from this information.

Acknowledgements

This work was supported by NSF grant CCR9706151, NASA grant NCC5170, and UMIACS. The authors
would like to thank Michael Fredericks and Shari Lawrence Pflceger for their valuable comments on earlier
drafts of this paper.

References

[1]  V.R.Basili, "The experimental paradigm in software engineering", Experimental Software
Engineering Issues: Critical Assessment and Future Directions, International Workshop, Dagstuhl,
Germany, 1992. Appeared in Springer-Verlag, Lecture Notes in Computer Science, Number 706,
1993.

[2]  V.R. Basili, "Evolving and packaging reading technologies", Journal of Systems and Software, vol.
38,no. 1, pp.3-12, July 1997.

[3] V.Basili, G. Caldiera, F. Lanubile, and F. Shull, "Studies on reading techniques", Proc. of the
Twenty-First Annual Software Engineering Workshop, SEL-96-002, Goddard Space Flight Center,
Greenbelt, Maryland, pp.59-65, December 1996.

[4] V.R.Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Soerumgaard, M. Zelkowitz, “The
empirical investigation of perspective-based reading”; Empirical Software Engineering Journal, vol.
1, no. 2, 1996.

[5] V.R.Basili, S. Green, O. Laitenburger, F. Lanubile, F. Shull, S. Serumgard, and M. Zelkowitz,
"Packaging researcher experience to assist replication of experiments", Proc. of the ISERN meeting
1996, Sydney, Australia, 1996.

[6] V.R. Basili,and D. H. Hutchens, "An empirical study of a syntactic metric family", JEEE
Transactions on Software Engineering, vol. SE-9, pp.664-672, November 1983.

[7]  V.R. Basili, and R. W. Reiter, "A controlled experiment quantitatively comparing software
development approaches", IEEE Transactions on Software Engineering, vol. SE-7, no. 3, pp.299-
320, May 1981.

[8]  V.R. Basili, and H. D. Rombach, "The TAME project: Towards improvement-oriented software
environments", IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June 1988.

[9] V.R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in software engineering”, IEEE
Transactions on Software Engineering, vol. SE-12, no. 7, pp. 733-743, July 1986.

[10] V. Basili, F. Lanubile, F. Shull, "Investigating maintenance processes in a framework-based
environment", Proc. of the Int. Conf. on Software Maintenance, Bethesda, Maryland, pp.256-264,
1998.

[11] D.T.Campbell, and J. C. Stanley, Experimental and Quasi-Experimental Designs for Research,
Boston: Houghton Mifflin Co, 1963.

[12] Composable Systems Group, "Model Problems", http://www.cs.cmu.edu/~Compose/html/ModProb/,
1995.

[13] P.Fusaro, F. Lanubile, and G. Visaggio, "A replicated experiment to assess requirements inspections
techniques", Empirical Software Engineering Journal, vol 2, no.1, pp.39-57, 1997.

[14] IEEE. Software Engineering Standards. IEEE Computer Society Press, 1987.

[15] C. M. Judd, E. R. Smith, and L. H. Kidder, Research Methods in Social Relations, sixth edition,
Orlando: Harcourt Brace Jovanovich, Inc., 1991.

[16] O. Laitenberger, and J. M. DeBaud, "Perspective-based reading of code documents at Robert Bosch
GmbH", Journal of Information and Software Technology, 39, pp.781-791, 1997.

{17] F.Lanubile, "Empirical evaluation of software maintenance technologies", Empirical Software
Engineering Journal, vol.2, no.2, pp.95-106, 1997.

[18] E.Lanubile, "Report on the results of the parallel project meeting reading techniques”,

12



[19)

[20]

(21]
[22]

{23}

(24]
(25]
[26]

[27]

http://seldi2.ur1iba.it:1025/isem97/readwg/index.htm , October 1997.

F. Lanubile, F. Shull, V. Basili, "Experimenting with error abstraction in requirements documents”,
Proc. of the 5th Int. Symposium on Software Metrics, Bethesda, Maryland, pp.114-121, 1998.

C. M. Lott, and H. D. Rombach, "Repeatable software engineering experiments for comparing
defect-detection techniques”, Empirical Software Engineering Journal, vol.1, no.3, pp.241-277,
1996.

K. Popper, The Logic of Scientific Discovery, Harper Torchbooks, New York, NY, 1968.
A. Porter, L. Votta, V. Basili, “Comparing detection methods for software requirements inspections:

a replicated experiment”, [EEE Transactions on Software Engineering, vol. 21, no. 6, pp. 563-575,
1995.

F. Shull, F. Lanubile, and V. R. Basili, "Investigating Reading Techniques for Framework
Learning", Technical Report CS-TR-3896, UMCP Dept. of Computer Science, UMIACS-TR-98-26,
UMCP Institute for Advanced Computer Studies, ISERN-98-16, International Software Engineering
Research Network, May 1998.

F. Shull. Developing Techniques for Using Software Documents: A Series of Empirical Studies.
Ph.D. thesis, University of Maryland, College Park, December 1998.

F. Shull, “Reading Techniques for Object-Oriented Frameworks",
http://www.cs.umd.cdu./proiccts/SoftEnQ/ESEG/manua]/sbr package/manual.html.

F. Shull, "Lab Package for the Empirical Investigation of Perspective-Based Reading”,
http://www.cs‘umd‘edu/projccts/SoftEng/ESEG/manual/pbr__package/manual.html.

Z.Zhang, V. Basili, and B. Shneiderman, “An Empirical Study of Perspective-based Usability
Inspection”, Human Factors and Ergonomics Society Annual Meeting, Chicago, Oct. 1998.

13



puejAiepy - 193ua9 J9j0yunel 4
pue
puejiiepy Jo Ajisiaaiun
92udI9g JaIndwo9 jo Juswuedaqg
SaIpn}g J9jndwo) pasueApy 10} 3)NJSu|
dnoug Bunsauibug alemyjog |ejuswiiadxyg

ljiseq "y 10101\

abpajmouy] jo Apog e pjing
0] sjuawiadxg buisn




auop s)}ab uonejuswiiadxs moy -
pazAjeue pue }jing aie S|apowl Moy -
ale spj|al} ay) buowe saoualaylp syl -«

-Bunnioenuew ‘suipaw ‘sojsAud 6o -
‘sp|al} Auew ul pasn uaaq sey jey} wbipesed sy} st siyl

awl} JOAO UOIIN|OAS [apow —
uoljejuswadxe —
(sasseo0.d Buinjos wajgosd ‘uiewop uonedljdde) Buipjing [spow -
abpajmouy Jo uoljejnsdeous pue ‘uonos|dl —
uoljealasqo -

“-3°| ‘Buluies| saAjoAul auldiosip e Buipuelsiapun e

auljdiosiq e ui abpajmouyl buiajoa]

N



> ok, L

aul|dIosIp a1em}jos sy} Ul uonejuswiiadxa jnoge si y|ey siy L

uoljejuawiiadxa pue sisAjeue jusidlynsul st alsyy —

1X8Ju02 3y} Jo} salbojouyoa} jo sHwi| ay) jo uoubosal jJo yoe| -

sul|diosip ayj Jnoge uoseal 0} S|apoul Jo 189S Judidiynsul —
‘Apualing

palpn}s pue pooisiapun aq 0} PaaU Sjo0aye 11vyY} —

saoualalip 9sned jey) ssjgelieA jo Jaquinu abie| e aie a1oy} —
awes ayj Jou s| alemyos ||

Wa)sAs oy} JO 1X8JU0D 8y} Ul OM} By} usamiaq diysuonelal
sy} pue sjonpold ‘sessaso.id ay) JO ainjeu ay} puejsiapun 0} pasu ap\

aoualas Alojesoqe] e s| Busdsauibua asempos

Bulidauibug asemyos uj
abpamouy BuiA|OAT



- JINIL

sjeob ajeAnop «
pasn ssajoud azuajoeseys .
sdlsuajoeieyd aremyos Ayuap| «

sauljaseq p|inq o} ejep azAjeue pue ‘Yis ‘Jayjes

¢S3S02 3anpai anbiuyae) 6unsa) Juasayip e I ANV.LSH3ANN

£9snal saybiy o) pes) 10O IIIM »
¢Ajenb anoadwy sanbiuyss) uipea Jejnanted [JIA » S|eon)

Aljed0] Juswenoudwy ue ajenjess pue ‘suyap 1o }2a[oS

sjuawiadxs uodn paseq ssasoad Jojie] . SS3ASSVY

Bujuies; auyay . Ak ajelal|

spJepuejs ajepdn .

sseuisnq inoA ojui Juswanoiduwy ay} sjeibajul

JOVMOVd

wbipeled juswarosdwyi Ayjenp
9y} ul sy Buipjing abpajmouyj/sjuswiiadxy asaypn

SI1dANVX3



sul|diosip sy} o} |nyasn si Jey) abpsjmouy
jo Apoq e pjing 0} Auessaoau s| sjuawiiadxa Buluiquon <=

sa|qeliea
JO }8s |jews ‘A}1jeal JO WISO20IDIW ‘SANSSI [9AD] MO| YJIM [EBp —

S8JusIsip 8sned jey} sojgeLieA jo Jaqunu abiej ay) —
(pajj01ju02) syuswadxe YIm swa|qodd

solsiiejoe.leyd Jonpold pue sonsisioeleyd
ss920.1d ussmiaq diysuonejal ay} se yans ‘ss|qelen
OM} usamiaq diysuonejal e 1oy Buiyoo| ate Aay) AjjeaidA |

'(8INPaYOS 10 }S0D) SJUIBIISUOD [BIUSLUUOIIAUS ‘soljsliajoeleyd
Jonpoud ‘syoaye ssadoid Apnys 0y :sasodind Auew Joy pawouad

Salpn}s ased 0} sjuswiiadxe pPajjoJjuod woly :seliobajes Auepy

sjuawliadx3 wouy
abpajmouy jo saipog BuiajoaT



‘g)eol|dal pue ajeiode||oo o} Buljim siayoseadsal jo Apunwwio) -
UOIJBUIGWOD pue UoIeol|dal J0) UOIJeJUBWNIoP JUBIDIPNG -

“1X9Ju09 ssao0.4d ay} jo soioads —
(syeayy Aupljen Joy dn ayew) uoneueA ubisap |ejuswiiadxs —
1o} moj|e 0} pabueyd aq ued jey} sajqeleA }1xajuod

sasayjodAy [aA8| ybiy poddns 0} 8|qeulquod —
Juswiliadxa pauldp ||dM € 10} MOJj[e Jeyj] 1XSJUOD B Ul USHUM —

sasayjodAy pajielap jo s}aS
sasayjodAy pa|ielep Bunos|es auy o} suoldo apiroid —

sajgelleA juspuadapul pue juspuadap Jo s}as Ajijuspl —
Ajunwwod Bulesuibus aiemyos sy} Jo }salsjul ssalppe —

sasayjodAy [aA9) ybiy jJo sleg

Buliaauibug asem}jos ul abpajmou)
Jo salpoq aaisuayaisdwod buipjing 1o} eudlld



s|eob jualayip uodn paseq auo Uey) sjoayep JusISyIp
pul |im sjeob oyioads uodn peseq Guipeas o} yoeoidde |einpsooid y —

Soljslisjorieyd 9say) aAeY Jou saop jey)
SUO UBY] dAI}08YS aI0W S| 8sSn 10§ USALP |eob pue ‘Oloads uolejou
pue juswnoop ‘paulyap Ajleinpasoud si jey) anbiuyos) Buipeal v —

¢ s9sayjodAy [aAs] ybiy sy aie Jeypy -

¢,SUOIJIPUOD UIBlSD Japun
SUO [einpa2doid SS8| B UBY) SAI}0aYS 10w aq pinod yse) Buusauibua
2Jem}jos e 0} yoeoidde [euinpadold e jey} sjesjsuowsp om ue) —

¢$,9SN 10} pajepljeA
Alleauidwa pue ‘usaup |eob ‘ol10ads uolejou pue Juswnoop ‘pauysp
Ajleinpadoud ale jey) senbiuyoas} Apnys pue ubisep AjaAlosye em uen —

i1saJajul Jo suonsanb [aAs| ybiy sy) ale 1By o

}ONpPOo.d B UO SS820.4d JS e JO S)oay3 ayj buizAjeuy -
Ajunwwod ay} 0} }salalu| [elsuss) .

SN204 |9A97 YbBIH e Buisooyn

] 1,.5.:%« £
m »\wx.ﬂ



@oueuUsjUlBW ‘@shal ‘uoIjoa)ap 109)ep B8
yse} Jejnoiued e 10} papasau Buipuelsiapun ayj} aAdiyoe 0}
sueld }sa) ‘apoo ‘ubisap ‘sjuswaiinbai 68
Joejilie a1eMos e Jo sisAjeue jenplAipul ay}
s| Buipeals atemyos ‘Ajjeoioads aloN

1onpo.Jd a1emyos B Ul 10} Y00| O} Jeym pue
peal 0} moy Buifes Japeal ay} 0} USAIB SUOI}ONJISUI JO }8S S)aIoUoo e
2 onbiuyos) Buipeal e sI Jeypn

-+ ‘ggnaJ ‘eoueuajuIeW ‘SMIIAAI 10} [ed1)LId S| buipesy
Bunjlum Joj japouwl e s| Buipesy
sjonpold pue sjuswnoop alemyos
BuijonJisuod pue BuizAjeue 1o} AJAOE |B21UY23) Ad) B S| Bulpesy
s Buipeal yoid AYpa

Buipeay 10} UOI}eAlJON
as( 40} Buipuelsiapun :ajdwex3



Sa|qelIBA IX3JU02 pue ‘Juspuadap ‘Juspuadspul ay) Alsse|o
pue Ajijuspi 0} ss|gelien ayj Jo yoeas buisodwoosp Japisuo)

JUBWUOIIAUD JO }X8JUOD 8Y) Ul OYM JO M3IA JO Julod ay} wolj snooy
0} Joadsal yyum asodind o} Japio ul Apnis Jo 309lqo ue azAjeuy -

2)e|dws | |eos

whipeied soudN/uUoIISaNd/jeos) ay) Buisn Jspisuo)

/,S9|qelieA [enpliAipul Jno Buiejos! ‘sjuswiiadxa |enpiAlpul
wo.} sasayjodAy Buluiquoo Joj Jomawelj e pjing am op MOH

SN204 |9Ad] YbBiH e Buisooyn



19S 9|gElIeA JO ]1X3juod
3y} Ul T9p[ING Sbpamouy ay) JO MaIA Jo jutod ay) wol) Tonpoid
B UO SSoUoAoa]s JIay] SJEN|eAs 0} SonbiuyJa) buipeal azAjeuy

(- ‘Buiubiseq ‘Bunsa] ‘Buipeay) sse|n) anbiuyos| -
(" ‘loo] ‘enbiuyoa] ‘pPoyls|N ‘|19POIN B]2AD 8)I) sse|D) sse00ld —
(" ‘Jonpolid ‘ssadsodd) Apnis jo 108lqo -

:Apnjs Jo 108[go ay) azusjoeleyn

VES
3[JElIeA) JO 1X81u0o 8y} Ul T8p[ing abpajMmouy ay) JO MaIA 1o julod ay)
Wwo.l} JoNpoId B U0 SSSUSANDS)S 119y} SJBN[BAS 0] S9ss0004d azAleuy —

S]oNPoId UO S8SS820.id JS JO S)oayg ay) BuizAjeuy

SN204 |9A9 YbBiH e buisooyn



R -

R . 50

(29) 185 9|qeueA

JO 1X8ju02 8y} Ul JTep|ing SbpajMmouy 8y} JO MSIA JO iod ay)
WwoJj JUsInNoog Ssjuatialinbay B ul S30948p }0319p 0} Ajjiqe
J19Y) SJEN[EAS 0} Senbiuyoa} buipeal azAjeuy :|eoH o|ldwexy .

-+ Joyg UdaIIg ‘solewayieiN ‘YIS ‘ysiibul) uoneloN jonpold -

-+ ‘goppMolU| JOSN ‘Ue|d }sa] ‘ubiseq ‘sjuawalinbay) adA | jonpoid —

Ayqesn ‘uoioa3aq 39349(Q) [BOD SSOUSAAIOBYT —
(" ‘sisAjeuy ‘uoidNISUO)D) SSB|D SSBUBAIOSYT —
19NpPO0Jdd B UO SSBUDAIIIBYT SNJ0} 8y} azlisjoeleyy .

(19) 18S S|JElEA JO 1X3Ju0d
ay} ul TSp[INg SDPaMOUY aU} JO M3IA Jo jJulod 8y} wouy S3onpold
10 SSOUSAIIDOIJJ0 JIay) SJENEAs 0} SSnbiuyoa) buipeal azAjeuy .

sn204 |oAa] YybiH e Buisooyd



et
L ée o,
N " N

**‘;“m o

uo13233aq
199)8Q

/

sjuawaldinbay sisAjeuy

N

19Npoid U0 39943

\

SN20

ysibu3

Buipeay

anbiuyoss]

$S920.d

Apnis jo 309[qo

SN204 |[9A97] YbIH e Buiuijay



opod
yiomawel4 dlomewelq Aleiqi] 821n0S
Joyg UsaI0S UsiIBug HOS "ti_ Xog ¥oejg xog SWYMm  8pod 1osfoid

uoijejoN:19NpoId \
[49)

adA}:1onpoad adeuejul Jasn ubise@ sjuswalinbay ublse 9poD ue|disel

jeoo) 3093 " Aujigesn uondsia( 1o8keg mo:mg
30VdS

sse|) 10943 siskleuy uoIONAISUO0D NTH0Nd

anbiuysa] :ssa8d%0id Buipeay

.@ sanbiuyose] Buipeay jo saljiwed



8pod
yloMmawel4 Ylomawel4 Aieiqi] 821nog

Joys usaidg ysibuz YOS **° xog Wde|g xodg SUM  9poD jasloid

UOI}BJON:}ONpOoId
\ 4N® <
adA]:1onpoad ascepau| Jasn cm_é_scmm ubiseq °8poD ue|d}sa]

jeos) 32343 "2 Algesn uonosla osjed soueusjulely  Ssnay

3oVdS
sse|) 130943 sishleuy UoHONHSUOD W3190¥d

155 S[GENEA JO 1X8)uod 8y} ul TpJng BBPajmoly] 8y} 40 M3IA jo juiod
sy} WoJ} SJoNpoId U0 SSOUDAINIIBHS JIoy} SIENEAS nbiuyoo) buipeal azAleuy L9
anbiuyosa]:ssadoid Buipeay

.,_M_;m sonbiuyosa] Buipeay jo saljiwed



Ajjeluswiiadxa
paipnis aq ueo jey} sanbiuyos) Buipeal 1o} uoijuep ssasold
B 10} solisiia)oelieyo/sauljapinb Jo 1os e saulep sjeob asay |

suonoadsul se yons ‘spoyjaw Buisixa ul sjgesn  —
asn S}l 10} SAI}03Ye 8q 0} paljuaA Ajecuidws -~
Juswinoop ay} jo abelanoo tgnoiped e apinold 0) pasnooy -
usAlp [eob -
pauljep Ajjeinpsoosd -
Juswuodinue pue 103loid ayy 0} 9|qeloje} -
olj10ads uoljejou pue juswnoop -
aq ued jey) salbojouyoss) buipeal J0 }as e auljep 0] :Sjeon

pauljap usaQ sey ‘SoLIBUdIS
Jeuonjesado psjeo ‘senbiuyos) buipeal Jo Ajiwey e buijeisausb
0} yoeoudde ue ‘suoisuawip/soljsliajoeieyd Jo 189S Siy} USAIS

uoniuag buipeay paseg-oLieuadg



sjuswiladxa |[ENPIAIPUI JO} SHIOMBWE.)
e apinold pue sesayjodAy [aAs| ybiy auy Asnes o} sjdwany

(155 S|GEILER) JO 1X8}U0d 8y} Ul J3P[ING SDPS|MOU
2y} JO MaIA Jo juiod 8y} woly STONPOId UG SSSUSAIIOSYS 18U}
STENTEAS 0} SSNDIUD3) DUIPES] PISE] OHEUSJS JO 195 & azZAjeuy

(185 S|qelen) JO 1Xaju0d ay} ul Jepling abpajMmouy
oy} JO M3IA JO Juiod 8y} Wou} JoNpoJd € U0 SSauaAljoaya Jisy) 3lenjens
0) SanbiuyJ3) buipeal J1jioads UOIJejou pue Jusiindop "passnioj

3DEI9A0D 'PasSeq-A|[eanpad0id 'pajusdLio-|eob JO }9s E azAjeuy

(- ‘oiy19ads UOIIRIOU PUB UOIJRIUBWNIOP PISSNIO0} abeianod
‘paseq Ajjeinpasold ‘pajusiio [eoh) soisusjoeleyd anbiuyos] -

(- ‘Buiubisaq ‘Bunsa] ‘Buipeay) sse|d anbiuyos] -
'ss9004d 3y} azllajyoeieyd

yiomeuweld [ejuswnadx3
ay} wodj snoo4 ay1oadg e buisooyn

s “b"n-%f '
E‘ _&I 3’:‘- =



Ainbiquy e pajusO  SPIM
Joiig eoinoN  Madx3  sadojgas@ JosM J8)se]  UOISSIWQ J09.I00U| Aouajsisuodu]  ysel woalsAg

NN T

paseg Ajigesn paseg aA1}o9dsiad paseg }29j8Q paseg adoog

SIX8)u02 asoy) Ul Ajjejuswiiadxs pajenjeas —
pue SIXa}uod JUaJayIp ul 3sn Joj pazusjeweled —
sanbiuyos} Buipeal Jo saljiwe) Jnoj padojaAsp SABY SAN e

(195 S[GENEA) JO 1X8JU09d 3y} Ul TOp[INg SPPS[MOUY
oy} JO MaIA Jo Julod 8y} wol) SJoNpoId U0 SSSUSAIOSHS J1ay)
S1en|ens o) SaNbiuyoa) bUIpEal PaSeq OUBUsds JO 1S e azAleuy

yJOoMauwed |ejuswiiadx3y
ay] wod} snoo4 dij10adg e buisooyn



|jpuuosiad jo8loid yosog
“wuspnis Buuesulbug a1emyos |euoissajold ‘syoslgns 13S/VSYN
B9 ‘papuedxa Ajjenuiluod aq ued (Ss|qelieA JXSjUuoD) SIX8jJUoD .

)9 —
S8SSE|D 109)9p 8sooy) —

Juswieal) |ejuswiiadxs asooyd -

aAlpadsiad yoes 1o} sassadoud |einpadold suyaq —
Jasn ‘1a}se) ‘Jaubisap saAloadsiad ssooyd -

————

"BUIDESY PoSEey- oAj0adsIod O[dWexXy

(195 S|GElEA) JO }X8Ju0d
sy} ul TOPJINg SDPJMOUY 82U} 0 M3IA JO Julod Sy} WoJj JUSWNI0(Qq
SJuowiaaiNbay € Ul S}09j9p 109)ap O] AJIJIqe Jiay) 3Jen[eAs

0} Sanbiuyd9a] buipeal paseq oleuads Jo Jos e azAleuy .

yiomauwiel |ejudwliddx3y
ay} wo.uj snoo4 ayy1oadg e Buisooyn

L



AnBiquy pajusLO apIM
anbiuyosa} Jadojans Josn 49)se@l UOISSIWQO J09100U| JUS)SISUOIU| yse | wolsAs

Jou3 e2InoN Hadx3
A0VdS
NOILNTOS
Ahwe4 paseg Aljigesn pesed aAljoadsiad aseq Joajed paseg 8doog
3pod
yomaweld ylomawelq Aeiqi] 99IN0g

joyg usalog  uslibul HoS xog Yoelg Xog Sjum  @pod 1o9loid
uoijejoN:39NpoId

adA]:31onpo.id eoeusiu] J8sn cm_wécmm cmﬁéwmk
Aupqescel]  uoposleg j09jeg SdUBUSJUIEN asney " -

30VdS
IW3190dd

|eoo) 130843 Anjigesn

sse|) 19943 sisAleuy uolonJIsuo)

_ anbluysa]:ssad0id BuipeEay

sonbiuyoa] buipeay jJo saljlwed




iR

(" ‘AemuoN ‘puepjoog ‘uspamg ‘Ajeyl ‘Auewan) °'gn) :seluUNo) ajdwex

(¥9Q) yusonT

(49d) yosog Hagoy

(¥gn) shsua) Jo neaing

(49S ‘“Y4an 'Y¥9a) swspnis WN

(49N "¥9d) @sinod 33 [euolssajold NN
(49d) 04SO/VSYN

(Aysnpu| ‘AjisIaAlun ‘JUBWIUIBAOD)) :SIX8juo0)) ajdwex]

JOou pIp S18y}o ‘sisjuswiiadxa se Ajjoalip se sn paAjoAUl SWOS
SIX3]U0D JuaiayIp Ul asn 1o} pszusjsweled

sanbiuyos} buipeal Jo saljiwe} Jnoy ||je uo —

sjuswiiadxa [elaAaS UNnJ aABY SN

sjuswiadx3g jo }9ag ajdwes



synsaJ Apnis jo Alpliea Hoddns -
sasayjodAy pajielsp sy} fen —
0} SN MOJ|e S3|gelleA 9say} JO SSNjeA ay) builiep

uoneoijdal Joj pajuswnd0p pue paijioads
JayLny 9q 0} pasu sajgelieA 8y} UM Po]EIDOSSE SUOlISaND

;.ss900.d ay} Buiwlopad aie s}oalans JeUM -
'$aNss| SajqeueA 1xajuoy —

¢, SSOUBAII0SYS 10} BLISIIO poob j09|9s aM Op MOH -
'sanssi (ajqeueA juapuadaq) 1onpoid JOo SSBUSANOSYT —

¢, 90UBWIOJU0D ss900.4d 10} JUNOJOOE 9M Op MOH

/. ssa%04d ay} Ajloads/aulep @M Op MOH ¢
‘sanssl (ajqeueA juapuadapul) 9|qeleA ss330id —

‘palan0d q 0} pasu jey} suoljsenb Aueuwl |jiis aje aidyl -

yiomauield jejuswiiadx3y
ay} wodj snoo4 aiy199dg e buisooyd



aoue|jeqtajunod o} bunesidas -
sjuswjeal} ssooe sjoalgns o uonesbiw snosuejuods —
Juswijeal) pue aduailadxs Jo uoljoessiul —

Alpi|eA 0] sjealy} aouejeq 0} Sh SMO||Y

SaI}IAI}OB PUB SJUSAS JO Japio Alep —
sjoalgns Buowe Ajjiqeuen —
(108fosd ui ‘aul-4o ‘A0} ‘WOOISSE|D) IX8JUOD —
aousladxa joalgns —

sa|qeLieA 1xajuon builien

s)nsaJl Buluiquod ‘sisayjodAy swes sy} buidssy
‘sjuswiiadxa pajiejep Buiesrdas Ag sbpsimouy dn pjing ued spA

abpajmouy| asealou|
0} sjuawiiadxg pajielaqg bulubisaqg

e
w\ - é .



AinBiquy
anbiuyosa] JadojaAa(g J8sM J8)se] UoISSIWQO }984J00uU| Jul)SISuodU|

10413 S82IAON Madx3 .
////NMMV 30VdS
NOILNT0S

Aiwe4 paseg Aljigesy peseg aAljoadsiad pasegq }o9Je(

ysibug d0s
uol}elJON J0US usai0s
JoeuyY aoeualU| Jasn sjuswalinbay
SN204 uonoayeq Alewouy
340VdS
IN3T190¥dd
Apnis jo 199[qO Buipeay/sisAjeuy/ssao0ld

(195 S|gBIEA) JO 1X8JU0d 8y} Ul J3p|INg SDPa|MOUY
ay] JO M3IA Jo Juiod By} wouy Safjewioue 199)9p 03 AJ[Iqe 1i1ay} 8jen|eAs 0} jJoejiJe
Ue JO 9DBIOA0D Jejnoiled e opiAoId 0} posSnoo} 50559904d JO }8S e azAleuy €9

B8 Sanbiuyo9] SISA[euy JO Saljiwied pasndog



e e -

JUSWUOIIAUS
ay) o) paJojie} ueo Buipeal os ‘sjeob asoy) 0} paje|al s}0a9p
pul |im sjeob oigioads uodn paseq Buipeal 0} yoeoidde |einpadold ¥ —

(sousliadxa uo spuadap ‘'6°9) suolnipuod uleuad Jspun
auo |eINpa20id SS9| B UBY) SAIJ0aS aIow 8g pinod yse) Buliesulbus
asemyos e 0} yoeoiadde jeinpadsoud e ey} ajesjsuowsp ued sp\ —

asn 10} pajepijeA
Ajlesuidwa pue ‘uaaup |eob ‘oioads uoljejou pue jJuswndop ‘pauysp
A|jeanpasoud ale jey) sanbiuyoa) Apnis pue ubisap AJaA1}oay ued sp\ —

s9ss920.d aiemyos noge abpajmouy Ino
dn pjing pue sjuawladxs [elaAss JO S}INsal 8y} auiquiod 0} 9|qy

sjuswiIddx3 woudj suoisnjduo)

- w..m



sassaooid ypm sasuaradxa Jiay) ajesbajul 0} suolneziuebio smoje —
sassaoo.d Bupuawnosop pue Bujuyap Joy Hoddns sapinosd —

_soanjoeud }saq, Jojie} 0} Ajjige pue jo souepodwl SMoys —

ssoo04d Buoa|as jnoge syuswabpnl Bupnjew 1oy siseq 1sajeq e sapinoid —
abpajmouy 3S [eonoead JUBAS|SS BWOS SIBJ0 —

‘slauoljljoeld 0} sjyouag

sjojuawiiadxe jo Ajunwwo? e sjessusb —

sjenuew Aiojesoqe| ajeibajul pue dojoasp 0} fem e sapinoid —

abpajmouy 33 |eonoeld jueasjal Bulpjing o) Ylomawel) e SIS0 —

sjuswiiadxa [ENPIAIPUI JO SSBUBAIIDBYD B} asealdul 0} Ajge —
'SJayoleasay o] Jijsuag -

}iomauwel |ejuauwiiadxsy
Buipjing abpajmouy| Jnoge sUoIsSN|dU0Y
)



sivyl0 -
siaquiaw N¥3SI -
SUOI}E20T JoYIQ Ul slejuswiiadx3 sy .

SOSSEARI| auWIay[INg ‘UOMY| SeY
‘1obas|}d 9ouaime] Leys ‘syouspaid pald ‘Kemiapup saIpnis MaN -
Bueyz

c:.__ﬁN ,NH_Bow_mN uiAJep ‘pleebwniog YaAIS [Inys 1s8.io4 ‘ajignue]
oddiji4 ‘1ebiaqualie J8AIO ‘USaI9 HOOS ‘sjuswiadx3y papodsy -

K100 siejuswadx3 sy o

ajignueT] oddijid ‘|nys 1sa.104 -
‘aloy peajuasald seap| ayi o} Ajoang .

3IOM SIUL 0} SI0INQLIU0D



Py

Session 2: Experimentation

Culture Conflicts in Sgftware £ngineering Technology Transfer
D. Wallace, National Institute Of Standards and Technology,
and M. Zelkowitz, University Of Maryland

An Adaplation of Experimental Design to Lmprrical Validation of Sofiware
Lngineering Theorres
N. Juristo and A. Moreno, Universidad Politecnica de Madrid

LDisciplined Software Engineering. Extending Enterprise Engineering
Architectures fo Support the OO Paradjgn
F. Maymir-Ducharme, Lockheed Martin



Sy -2

Culture Conflicts in Software Engineering Technology Transfer

Marvin V. Zelkowitz’ Dolores R. Wallace David W. Binkley
Department of Computer Science and Information Technology Laboratory Computer Science Department
Inst. for Advanced Computer Studies  Natl. Inst. of Standards and Technology Loyola College

University of Maryland Gaithersburg, Maryland 20899 Baltimore, Maryland

College Park, Maryland 20742 and Information Technology Lab.
and Fraunhofer Center - Maryland Natl. Inst. of Standards and Technology
College Park, Maryland 20742 Gaithersburg, MD 20899
Abstract

Although the need to transition new technology to improve the process of developing
quality sof<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>